4.6 Article

Nanoscale-cavity enhancement of color conversion with colloidal quantum dots embedded in the surface nano-holes of a blue-emitting light-emitting diode

Journal

OPTICS EXPRESS
Volume 30, Issue 17, Pages 31322-31335

Publisher

Optica Publishing Group
DOI: 10.1364/OE.463214

Keywords

-

Categories

Funding

  1. Ministry of Science and Technology, Taiwan [MOST 107-2923-M-002-005-MY3, MOST 108-2221-E-002160, MOST 109-2221-E-002-194, MOST 110-2221-E-002-131]

Ask authors/readers for more resources

The nanoscale-cavity effect significantly increases the emission efficiency of inserted QDs and enhances the FRET efficiency, particularly for radiating dipoles in QWs oriented perpendicular to the sidewalls of the nano-holes. This effect modifies the radiation behavior of light emitters inside a nano-hole through the Purcell effect, resulting in stronger far-field emission.
Although the method of inserting colloidal quantum dots (QDs) into deep nano-holes fabricated on the top surface of a light-emitting diode (LED) has been widely used for producing effective Forster resonance energy transfer (FRET) from the LED quantum wells (QWs) into the QDs to enhance the color conversion efficiency, an important mechanism for enhancing energy transfer in such an LED structure was overlooked. This mechanism, namely, the nanoscale-cavity effect, represents a near-field Purcell effect and plays a crucially important role in enhancing the color conversion efficiency. Here, we demonstrate the results of LED performance, time-resolved photoluminescence (TRPL), and numerical simulation to elucidate the nanoscale-cavity effect on color conversion by inserting a photoresist solution of red-emitting QDs into the nano-holes fabricated on a blue-emitting QW LED. Based on the TRPL study of the inserted QDs in a nano-hole structure fabricated on an un-doped GaN template of no QW, it is found that the emission efficiency of the inserted QDs is significantly increased due to the nanoscale-cavity effect. From the simulation study, it is confirmed that this effect can also increase the FRET efficiency, particularly for those radiating dipoles in the QWs oriented perpendicular to the sidewalls of the nano-holes. In the nanoscale-cavity effect, the enhanced near field distribution inside a nano-hole excited by a light emitter modifies its own radiation behavior through the Purcell effect such that its far-field emission becomes stronger. (C) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available