4.8 Article

Aligned porous carbon film with ultralow loadings of Pt single atoms and clusters for high-current-density hydrogen generation

Related references

Note: Only part of the references are listed.
Article Chemistry, Multidisciplinary

Ultrahigh Pt-Mass-Activity Hydrogen Evolution Catalyst Electrodeposited from Bulk Pt

Luan Liu et al.

Summary: This study reports on a three-component heterostructured hydrogen evolution reaction (HER) catalyst with ultra-high Pt mass activity. The catalyst consists of hollow PtCu alloy nanospheres supported on an array of WO3 on Cu foam. By utilizing the contamination from the Pt counter electrode, the authors were able to activate low-HER-activity materials, maximizing the utilization of Pt. The resulting catalyst exhibits ultrahigh Pt mass activity, outperforming commercial Pt/C catalysts and some state-of-the-art Pt-single-atom catalysts.

ADVANCED FUNCTIONAL MATERIALS (2022)

Article Chemistry, Multidisciplinary

Catalytic Kinetics Regulation for Enhanced Electrochemical Nitrogen Oxidation by Ru-Nanoclusters-Coupled Mn3O4 Catalysts Decorated with Atomically Dispersed Ru Atoms

Zhongfen Nie et al.

Summary: In this study, Ru-nanoclusters-coupled Mn3O4 catalysts were designed and explored for ambient N-2 oxidation, showing excellent catalytic performance. Both experiments and theoretical calculations reveal that the presence of Ru clusters and single-atom Ru is the reason for the outstanding activity, which effectively activates the chemically inert N-2 in synergy with Mn3O4.

ADVANCED MATERIALS (2022)

Review Chemistry, Multidisciplinary

Recent Advances in Design of Electrocatalysts for High-Current-Density Water Splitting

Yuting Luo et al.

Summary: The electrochemical water splitting technology is crucial for achieving global carbon neutrality. High-performance electrocatalysts that can operate at high current densities are essential for the industrial implementation of this technology. Recent advancements in this field have led to the development of various catalysts designed specifically for high current densities (> 200 mA cm(-2)). This article discusses these recent advances and summarizes the key factors that influence the catalytic performance in high current density electrocatalysis, including catalyst dimensionality, surface chemistry, electron transport path, morphology, and catalyst-electrolyte interaction. It highlights the importance of a multiscale design strategy that considers these factors comprehensively for developing high current density electrocatalysts. The article also provides insights into the future directions of this emerging field.

ADVANCED MATERIALS (2022)

Article Chemistry, Multidisciplinary

Noble Metal (Pt, Rh, Pd, Ir) Doped Ru/CNT Ultra-Small Alloy for Acidic Hydrogen Evolution at High Current Density

Dan Zhang et al.

Summary: This study prepared a series of noble metal-doped Ru/CNT catalysts using a microwave reduction method, demonstrating superior performance compared to Pt/C under acidic conditions, with excellent stability and activity.

SMALL (2022)

Article Chemistry, Physical

Single-Atom and Bimetallic Nanoalloy Supported on Nanotubes as a Bifunctional Electrocatalyst for Ultrahigh-Current-Density Overall Water Splitting

Wenhui Luo et al.

Summary: This work presents the rational design and fabrication of a highly efficient, cost-effective, and environmentally friendly non-noble-metal bifunctional catalyst for electrocatalytic overall water splitting. The catalyst exhibits excellent catalytic performance, achieving high current density at low cell voltage, and can be reactivated after simple treatment.

ACS CATALYSIS (2022)

Article Chemistry, Multidisciplinary

Synergic Reaction Kinetics over Adjacent Ruthenium Sites for Superb Hydrogen Generation in Alkaline Media

Qun He et al.

Summary: This study investigates the performance of ruthenium-based electrocatalysts for hydrogen evolution reaction (HER) in alkaline media. The results show that the well-dispersed ruthenium nanoparticles with adjacent ruthenium single atoms (Ru-1,Ru-n-NC) exhibit ultra-low overpotential and high turnover frequency, outperforming commercial platinum catalysts. The analyses reveal that the ruthenium nanoparticles and single sites can promote electron transfer and accelerate water dissociation and hydrogen desorption, leading to optimized reaction kinetics for superb hydrogen generation in alkaline media.

ADVANCED MATERIALS (2022)

Article Chemistry, Multidisciplinary

Synergy between Palladium Single Atoms and Nanoparticles via Hydrogen Spillover for Enhancing CO2 Photoreduction to CH4

Peigen Liu et al.

Summary: This study demonstrates the synergistic function between single Pd atoms and Pd nanoparticles on graphitic carbon nitride for selective photocatalytic reduction of CO2 into CH4, providing a new perspective for the development of selective photocatalytic CO2 conversion.

ADVANCED MATERIALS (2022)

Review Chemistry, Physical

Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction

Peng Zhu et al.

Summary: Hydrogen production from water splitting using renewable electric energy is a key topic for achieving a carbon neutral future. Single atom catalysts (SACs) have emerged as a new frontier in catalysis, particularly in the hydrogen evolution reaction (HER), due to their high activity and excellent chemical selectivity. However, the influence of the neighboring coordinated atoms from the supports is often neglected in the classification of SACs. This review proposes a new classification method based on the type of supports and highlights the importance of the metal-support interaction and coordination environment. Structural designing strategies are also proposed to address the current challenges in SACs for HER.

NANO RESEARCH (2022)

Review Chemistry, Physical

Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis

Xiaobo Zheng et al.

Summary: This review comprehensively outlines the recent exciting advances on novel atomically dispersed metal catalysts (NADMCs) with emphasis on understanding the synergistic interactions among multiple metal atoms and underlying structure-performance relationships. It discusses the synthetic approaches, characterizations, and energy-related applications of NADMCs, and provides insights into the remaining challenges and opportunities for their development.

NANO RESEARCH (2022)

Article Chemistry, Physical

Understanding the structure-performance relationship of active sites at atomic scale

Runze Li et al.

Summary: This article discusses the key factors affecting the catalytic performance of metal-based atomically dispersed catalysts and their relationship with the active sites. It first introduces the effectiveness of active site design through coordination effects, then discusses the role of chemical bonds in the active sites and the influence of the spacing of active atoms in intermetallic compounds on catalytic behavior. Additionally, the importance of synergistic effects in catalyst design is emphasized, and the key parameters affecting catalytic performance at the atomic scale are summarized.

NANO RESEARCH (2022)

Article Materials Science, Multidisciplinary

Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis

Hongyu Jing et al.

Summary: This review comprehensively outlines the latest progress of theory-guided design of advanced energy transformation materials, with a focus on the study of single atoms in various power devices and electrocatalytic conversion reactions related to energy. The electronic structure, interaction mechanism, and reaction activation path are discussed, and experimental synthesis strategies, structural recognition, and electrocatalytic performance are determined. Some viewpoints into the current issues and future design concept are also provided.

ADVANCED POWDER MATERIALS (2022)

Article Chemistry, Multidisciplinary

Ultralow Loading (Single-Atom and Clusters) of the Pt Catalyst by Atomic Layer Deposition Using Dimethyl ((3,4-η) N,N-dimethyl-3-butene-1-amine-N) Platinum (DDAP) on the High-Surface-Area Substrate for Hydrogen Evolution Reaction

Rahul Ramesh et al.

Summary: The study demonstrates an alternative method for achieving ultralow loading of Pt catalyst on highly porous nitrogen-carbon-powder coated carbon cloth (NC-CC) substrates using atomic layer deposition (ALD). It was found that the mass activity of Pt catalyst towards electrochemical hydrogen evolution reaction (HER) is extremely high for a smaller number of ALD cycles, but overall performance improves with an increase in ALD cycles. The uniform dispersion of platinum single-atoms and clusters on the NC-CC substrate was confirmed through transmission electron microscopy images.

ADVANCED MATERIALS INTERFACES (2021)

Review Chemistry, Physical

Recent advances in electrocatalysts for neutral and large-current-density water electrolysis

Yuanlin Xu et al.

Summary: Hydrogen as a clean energy resource is seen as a promising alternative to address energy crisis and environmental pollution. Electrochemical water splitting, including HER and OER, is essential for hydrogen production. Research focusing on developing electrocatalysts for water splitting in neutral conditions has been reviewed, with emphasis on understanding reaction mechanisms, rate-determining steps, and activity correlations. Single-atom catalysts show potential for high efficiency and activity, while three-dimensional freestanding electrodes are a growing trend for large-current-density operations. Challenges and future directions for neutral water electrolysis are discussed to guide the design of electrocatalysts for efficient hydrogen production at scale.

NANO ENERGY (2021)

Article Multidisciplinary Sciences

A Ta-TaS2 monolith catalyst with robust and metallic interface for superior hydrogen evolution

Qiangmin Yu et al.

Summary: The study presents a mechanically stable monolith electrocatalyst that achieves superior hydrogen evolution at large current densities.

NATURE COMMUNICATIONS (2021)

Article Chemistry, Multidisciplinary

Highly Conductive Amorphous Pentlandite Anchored with Ultrafine Platinum Nanoparticles for Efficient pH-Universal Hydrogen Evolution Reaction

Chenxu Zhang et al.

Summary: The study introduces a highly efficient electrocatalyst by anchoring single Pt atoms and clusters into functional amorphous pentlandite Fe5Ni4S8, forming Pt-FNS composites with excellent conductivity and unit catalytic activity.

ADVANCED FUNCTIONAL MATERIALS (2021)

Article Chemistry, Multidisciplinary

Design of Aligned Porous Carbon Films with Single-Atom Co-N-C Sites for High-Current-Density Hydrogen Generation

Rui Liu et al.

Summary: A carbon film embedded with single-atom Co-N-C sites was designed to achieve exceptional HER performance at high current densities, delivering 500 and 1000 mA cm(-2) in acid with overpotentials of 272 and 343 mV, respectively, and operating stably for at least 32 hours under static conditions. The findings pave the road towards rational design of SACs with improved activity and stability at high current densities in gas-evolving electrocatalytic processes.

ADVANCED MATERIALS (2021)

Article Chemistry, Multidisciplinary

The Electronic Metal-Support Interaction Directing the Design of Single Atomic Site Catalysts: Achieving High Efficiency Towards Hydrogen Evolution

Jiarui Yang et al.

Summary: Catalysts designed by electronic metal-support interactions (EMSI), especially the single atomic site catalyst Rh1-TiC, show higher catalytic efficiency than Pt/C, with smaller overpotentials, lower Tafel slopes, and higher mass activities. Additionally, they demonstrate energy-saving advantages compared to Pt/C.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Multidisciplinary

Superfast Synthesis of Densely Packed and Ultrafine Pt-Lanthanide@KB via Solvent-Free Microwave as Efficient Hydrogen Evolution Electrocatalysts

Nanzhu Nie et al.

Summary: A novel solvent-free microwave strategy is reported for synthesizing refractory Pt-based electrocatalysts with excellent activity and stability in hydrogen evolution reaction. The method also allows direct growth of catalysts on carbon cloth, showing promising potential applications.

SMALL (2021)

Article Chemistry, Multidisciplinary

Ultralow Ru Incorporated Amorphous Cobalt-Based Oxides for High-Current-Density Overall Water Splitting in Alkaline and Seawater Media

Dulan Wu et al.

Summary: This study introduces an ultralow Ru incorporated amorphous cobalt-based oxide catalyst for efficient and stable water electrolysis at high current densities, demonstrating its potential for industrial applications and exploring high-current-density water electrocatalysis by altering the catalyst crystallinity.

SMALL (2021)

Article Chemistry, Physical

Synergistic Pt doping and phase conversion engineering in two-dimensional MoS2 for efficient hydrogen evolution

Yang Li et al.

Summary: The study focuses on enhancing the HER performance of MoS2 through Pt doping and achieving partial phase conversion from 2H to 1T. It reveals the significance of Pt atom in electronic structure modulation of MoS2 and identifies the most active HER site in MoS2 as the S atom adjacent to Pt.

NANO ENERGY (2021)

Article Chemistry, Multidisciplinary

Stabilized hydroxide-mediated nickel-based electrocatalysts for high-current-density hydrogen evolution in alkaline media

Yuting Luo et al.

Summary: This study presents a nickel-based electrocatalyst mediated by hydroxide for high-current-density hydrogen evolution, showing excellent stability and efficiency. By controlling the charge redistribution of nickel sites and introducing iron elements, it can promote the water dissociation step at high current densities, enhancing the catalytic activity.

ENERGY & ENVIRONMENTAL SCIENCE (2021)

Article Chemistry, Multidisciplinary

Proton selective adsorption on Pt-Ni nano-thorn array electrodes for superior hydrogen evolution activity

Adeela Nairan et al.

Summary: By developing a unique nano-thorn-like Pt-Ni nanowire electrode as a superior HER catalyst, a local pseudo-acidic environment near the cathode surface in an alkaline electrolyzer is enabled, leading to an extremely high HER performance towards real applications. This innovative catalyst shows significantly better performance than the state-of-the-art Pt-based catalysts in an alkaline medium at large current densities.

ENERGY & ENVIRONMENTAL SCIENCE (2021)

Article Chemistry, Multidisciplinary

Self-Supported Transition-Metal-Based Electrocatalysts for Hydrogen and Oxygen Evolution

Hongming Sun et al.

ADVANCED MATERIALS (2020)

Review Chemistry, Multidisciplinary

Recent Advances in Electrocatalytic Hydrogen Evolution Using Nanoparticles

Jing Zhu et al.

CHEMICAL REVIEWS (2020)

Article Chemistry, Multidisciplinary

An Engineered Superhydrophilic/Superaerophobic Electrocatalyst Composed of the Supported CoMoSx Chalcogel for Overall Water Splitting

Xinyao Shan et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2020)

Article Chemistry, Multidisciplinary

Carbon-Defect-Driven Electroless Deposition of Pt Atomic Clusters for Highly Efficient Hydrogen Evolution

Qingqing Cheng et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2020)

Article Multidisciplinary Sciences

Electrochemical deposition as a universal route for fabricating single-atom catalysts

Zhirong Zhang et al.

NATURE COMMUNICATIONS (2020)

Article Chemistry, Physical

Electrochemical conversion of bulk platinum into platinum single-atom sites for the hydrogen evolution reaction

Zhiyuan Wang et al.

JOURNAL OF MATERIALS CHEMISTRY A (2020)

Article Chemistry, Physical

Thick Electrode Batteries: Principles, Opportunities, and Challenges

Yudi Kuang et al.

ADVANCED ENERGY MATERIALS (2019)

Article Chemistry, Multidisciplinary

Defect-Rich Graphene Nanomesh Produced by Thermal Exfoliation of Metal-Organic Frameworks for the Oxygen Reduction Reaction

Wei Xia et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2019)

Review Chemistry, Multidisciplinary

Single atom electrocatalysts supported on graphene or graphene-like carbons

Huilong Fei et al.

CHEMICAL SOCIETY REVIEWS (2019)

Review Chemistry, Multidisciplinary

Superwetting Electrodes for Gas-Involving Electrocatalysis

Wenwen Xu et al.

ACCOUNTS OF CHEMICAL RESEARCH (2018)