4.4 Article

Modeling of microscale internal stresses in additively manufactured stainless steel

Publisher

IOP Publishing Ltd
DOI: 10.1088/1361-651X/ac8698

Keywords

additive manufacturing; internal stresses; crystal plasticity

Funding

  1. Office of Naval Research [N00014-18-1-2858]
  2. National Science Foundation [DMR-2004429, DMR2104933]

Ask authors/readers for more resources

We developed models to understand the microscale internal stresses in additively manufactured stainless steel, focusing on their back stress components. By considering printing and deformation-induced back stresses, as well as deformation-induced back stresses associated with grain boundaries, we were able to accurately simulate and measure the microscale back stresses in the material. These results provide important insights into the origins and evolution of microscale internal stresses in additively manufactured metallic materials.
Additively manufactured (AM) metallic materials often comprise as-printed dislocation cells inside grains. These dislocation cells can give rise to substantial microscale internal stresses in both initial undeformed and plastically deformed samples, thereby affecting the mechanical properties of AM metallic materials. Here we develop models of microscale internal stresses in AM stainless steel by focusing on their back stress components. Three sources of microscale back stresses are considered, including the printing and deformation-induced back stresses associated with as-printed dislocation cells as well as the deformation-induced back stresses associated with grain boundaries. We use a three-dimensional discrete dislocation dynamics model to demonstrate the manifestation of printing-induced back stresses. We adopt a dislocation pile-up model to evaluate the deformation-induced back stresses associated with as-printed dislocation cells. The extracted back stress relation from the pile-up model is incorporated into a crystal plasticity (CP) model that accounts for the other two sources of back stresses as well. The CP finite element simulation results agree with the experimentally measured tension-compression asymmetry and macroscopic back stress, the latter of which represents the effective resultant of microscale back stresses of different origins. Our results provide an in-depth understanding of the origins and evolution of microscale internal stresses in AM metallic materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available