4.6 Article

Effect of Tension Temperature on the Anisotropy of Tensile Behavior for Az31 Alloys: A Visco-Plastic Self-Consistent Analysis

Journal

METALS AND MATERIALS INTERNATIONAL
Volume 29, Issue 4, Pages 908-921

Publisher

KOREAN INST METALS MATERIALS
DOI: 10.1007/s12540-022-01274-w

Keywords

Tension deformation behavior; Anisotropy variations; Deformation mode; Texture; Visco-plastic self-consistent model (VPSC) model

Ask authors/readers for more resources

This work investigated the anisotropy variation of tensile flow stress for AZ31 magnesium alloys at different temperatures and tensile strains using the visco-plastic self-consistent model. The results showed that the anisotropy of flow stress weakened with increasing temperature and exhibited a slightly increasing stage followed by a continuously decreasing stage with increasing strain. Activation of basal slip and tension twinning contributed to the development of a (0002)//LD type texture during tension deformation, while activation of prismatic slip produced a < 10-10 >//LD type texture. The study found that the macroscopic average resolved shear stress decreased significantly with increasing temperature or strain, resulting in the decline of the tension deformation behavior anisotropy.
In this work, the anisotropy variation of tensile flow stress for AZ31 magnesium alloys was investigated at various temperatures and tensile strains with the help of the visco-plastic self-consistent model. The results showed that the anisotropy of flow stress was weakened with the increase of tensile temperature, while such anisotropy presented a slightly increasing stage first and then a continuously decreasing stage with the increase of tensile strain. During the tension deformation, the activations of basal slip and tension twinning, together contributed to the development of a (0002)//LD (LD: loading direction) type texture. In contrast, the activations of prismatic slip produced a < 10-10 >//LD type texture. Such texture variations influenced the Taylor factors, but did not cause significant differences in the flow stress. By comparison, the difference in the macroscopic average resolved shear stress, which was calculated according to the critical resolved shear stress of each deformation mode and their respective activation fractions, decreased significantly with the increase of tensile temperature or tensile strain. This was the major reason for the decline of the tension deformation behavior anisotropy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available