4.7 Article

Active Diffusion of Self-Propelled Particles in Flexible Polymer Networks

Journal

MACROMOLECULES
Volume 55, Issue 16, Pages 7136-7147

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.macromol.2c00610

Keywords

-

Funding

  1. National Research Foundation (NRF) of Korea [2020R1A2C4002490]
  2. Korea Institute for Advanced Study [CG076002]
  3. Korea Institute for Advanced Study
  4. National Research Foundation of Korea [2020R1A2C4002490] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

This study computationally explores the diffusion mechanism of self-propelled agents in biopolymer networks. The dynamics of active tracers show rich and distinct physics depending on the mesh-to-particle size and Peclet number. The study reveals that when the particle is smaller than the mesh size ratio, it moves similarly to free space but with decreased mobility. However, when the particle size is increased to be comparable to the mesh size, the active particles explore the polymer network through trapping and hopping mechanisms.
Biopolymer networks having a meshwork topology, e.g., extracellular matrices and mucus gels, are ubiquitous. Understanding the diffusion mechanism of self-propelled agents, including Janus colloidal particles, through such biopolymer networks is thus of paramount importance. Here, for the first time, we computationally explore this issue in depth by explicitly modeling three-dimensional biopolymer networks and performing Langevin dynamics simulations of the active diffusion of the self-propelled tracers therein. We demonstrate that the diffusion dynamics of the active tracers feature rich, distinct physics depending on the mesh-to-particle size and Peclet number (Pe). When the particle is smaller than the mesh size ratio, it moves as if in free space with decreased mobility depending on the polymer-occupation density and Pe. However, when the particle size is increased to be comparable to the mesh size, the active particles explore the polymer network via the trapping-and-hopping mechanism. If the particle is larger than the mesh, it captures the collective viscoelastic dynamics from the polymer network at short times and the simple diffusion of the total system at large times. We study the trapped time distribution, flight-length distribution, mean-squared displacement, and long-time diffusivity on varying the Pe number and the tracer size. Finally, we discuss the scaling behavior of the long-time diffusivity with Pe, where we find a Pe range that yields a nontrivial power law. The latter turns out to originate from a large fluctuation of the trapped, activated tracers in conjugation with responsive polymer networks.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available