4.6 Article

Controlling Surface Deformation and Feature Aspect Ratio in Photochemically Induced Marangoni Patterning of Polymer Films

Journal

LANGMUIR
Volume 38, Issue 24, Pages 7400-7412

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.2c00179

Keywords

-

Funding

  1. Industrial Partnership for Research in Interfacial and Materials Engineering at the University of Minnesota
  2. PPG Foundation

Ask authors/readers for more resources

In this study, thin liquid polymer films are patterned by surface-tension gradients induced by deformation of polymer/air interfaces. The researchers developed a method to pattern surface-tension gradients along a solid polymer film and observed the effect of various experimental parameters on the maximum film deformation. A model based on lubrication theory was used to gain additional insights into the phenomenon, and complementary experiments confirmed the model predictions. This research provides mechanistic detail and fundamental principles that can be applied to control the process of forming desired patterns.
Thin liquid polymer films can be topographically patterned when polymer/air interfaces are deformed by surface-tension gradients. Toward this end, a recently developed method first photochemically patterns surface-tension gradients along a solid, flat polymer film. On heating to the liquid state, the film initially develops topography reflecting the patterned surface-tension gradients. But capillary leveling and diffusion of the photoproduct oppose this causing the features to eventually decay back to a flat film upon extended thermal annealing. Intuitively, this interplay between competing mechanisms sets a limit on the maximum film deformation during the process. Prior studies show that the initial film thickness, photomask periodicity, and amount of photochemical conversion significantly affect the maximum film deformation. Here, we use a model based on lubrication theory to develop additional insights into this observation. We identify two regimes, capillary-leveling-dominated and photoproduct-diffusion-dominated, wherein the respective dominant mechanism determines the maximum film deformation that can be additionally related to various experimental parameters. Scaling laws for the variation of maximum film deformation and aspect ratio with film thickness and surface-tension pattern periodicity are also developed. Complementary experiments show good agreement with model predictions. Insights into the effect of surface-tension pattern asymmetry on the maximum film deformation are also provided. These findings reveal mechanistic detail and fundamental principles that are useful for controlling the process to form target patterns of interest.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available