4.4 Article

Role of copper alumina nanoparticles on the performance of polyvinylchloride nanocomposites

Journal

JOURNAL OF VINYL & ADDITIVE TECHNOLOGY
Volume 29, Issue 1, Pages 17-28

Publisher

WILEY
DOI: 10.1002/vnl.21939

Keywords

conductivity; contact angle; copper alumina; dielectric properties; mechanical properties; nanocomposites; PVC

Ask authors/readers for more resources

Poly(vinyl chloride) (PVC) nanocomposites with different contents of copper alumina (Cu-Al2O3) nanoparticles were prepared and their structural, thermal, electrical, contact angle, and mechanical properties were thoroughly examined. The presence of Cu-Al2O3 nanoparticles in the PVC matrix was confirmed using Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) analysis showed a higher crystallinity of the nanocomposites. SEM images revealed a change in the surface morphology of PVC due to the inclusion of nanofillers. DSC analysis showed an increase in the glass transition temperature with an increase in nanoparticle loading. The inclusion of nanofillers also improved the electrical properties, with the composite containing 7 wt.% sample showing the maximum conductivity and dielectric constant. The mechanical properties of the PVC nanocomposites, including modulus, tensile strength, hardness, and impact properties, were significantly enhanced by the reinforcement of nanoparticles. The highest mechanical and electrical properties were observed for the 7 wt.% Cu-Al2O3 loaded nanocomposite. Contact angle measurements indicated that the addition of Cu-Al2O3 nanofillers increased the hydrophobicity of the polymer matrix.
Poly(vinyl chloride) (PVC) nanocomposites with different contents of copper alumina (Cu-Al2O3) nanoparticles were prepared by the solution casting method. The effects of the nanoparticles on structural, thermal, electrical, contact angle and mechanical properties were thoroughly examined. The presence of Cu-Al2O3 in the macromolecular chain was confirmed through Fourier transform infrared (FTIR) spectroscopy. The X-ray diffraction (XRD) analysis of PVC nanocomposites showed the systematic arrangement of Cu-Al2O3 nanoparticles within the polymer, which indicated the higher crystallinity of the nanocomposites. The surface morphology of PVC was changed into hemispherical shaped particles by the inclusion of nanofiller was analyzed from SEM images. The glass transition temperature of the nanocomposites obtained from differential scanning calorimetry (DSC) was found to be increased with an increase in loading of nanoparticles in the polymer. The AC conductivity and dielectric studies revealed that the inclusion of nanofiller increases the electrical properties of the material and the composite with 7 wt.% sample showed the maximum conductivity and dielectric constant. The mechanical properties such as modulus, tensile strength, hardness, and impact properties of the PVC nanocomposites were significantly enhanced by the reinforcement of nanoparticles into the PVC matrix. The reinforcing mechanism behind the increase in tensile strength with the addition of nanoparticles was correlated with different theoretical models. The highest mechanical and electrical properties were observed for 7 wt.% Cu-Al2O3 loaded nanocomposite. Contact angle measurements of PVC with various loadings of Cu-Al2O3 nanofillers demonstrated that the nanoparticle attachment increased the hydrophobicity of the polymer matrix.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available