4.7 Article

Improvement in the physicochemical properties of titanium dioxide by surface modification with 1H-1-carboxylate of isopropyl-imidazole and 3-aminopropyltrimethoxysilane: case study-as a filler in polylactic acid composites

Journal

JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
Volume 147, Issue 22, Pages 12365-12382

Publisher

SPRINGER
DOI: 10.1007/s10973-022-11476-4

Keywords

Titanium dioxide; Imidazole; Thermal analysis; Polylactic acid (PLA)

Funding

  1. CONACyT [CF2019 265239]

Ask authors/readers for more resources

This work presents the surface functionalization of titanium dioxide nanoparticles with 1H-1-carboxylate of isopropyl-imidazole and 3-aminopropyltrimethoxysilane. The functionalization improves the dispersibility of titanium dioxide in polymeric matrices such as polylactic acid, and exhibits excellent thermal stability, inhibiting the degradation of the polylactic acid composite.
This work presents the surface functionalization of titanium dioxide nanoparticles with 1H-1-carboxylate of isopropyl-imidazole and 3-aminopropyltrimethoxysilane. The surface and thermal properties of titanium dioxide are characterized by nuclear magnetic resonance, Fourier-transform infrared spectroscopy, zeta potential, X-ray diffraction, and differential scanning calorimetry. The functionalization mentioned above improves the dispersibility of titanium dioxide in polymeric matrices such as polylactic acid. Polylactic acid compounds are extruded with these nanoparticles; their crystallization capacity is studied by non-isothermal crystallization. The results obtained indicate the successful binding of organic structures to titanium dioxide. Likewise, the dispersion improves when the nanoparticle is silanized, reducing agglomeration when the isopropyl-imidazole 1H-1-carboxylate is bound to the organosilicon coating. DSC measurements show that isopropyl imidazole 1H-1-carboxylate adhered to the organosilicon coating exhibits excellent thermal stability up to 300 degrees C. Finally, the photo-degradation of the composites is studied by Fourier-transform infrared spectroscopy and atomic force microscopy, showing that the use of isopropyl-imidazole 1H-1-carboxylate inhibits the degradation of the polylactic acid composite compared to the pure polymer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available