4.3 Article

CO-releasing properties and anticancer activities of manganese complexes with imidazole/benzimidazole ligands

Journal

JOURNAL OF COORDINATION CHEMISTRY
Volume 69, Issue 22, Pages 3384-3394

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/00958972.2016.1231921

Keywords

PhotoCORMs; manganese carbonyl complexes; anticancer; imidazole; benzimidazole

Funding

  1. Scientific and Technological Research Council of Turkey (TUBITAK) [112T320]

Ask authors/readers for more resources

Carbon monoxide (CO) is an important signaling molecule which plays significant roles in the pathogenesis of cancer. CO is produced by enzymatic degradation of heme in mammals. Heme oxygenase 1 (HO-1) catalyzes the breakdown of heme into CO, ferrous iron, and biliverdin. CO induces HO-1 and inhibits cell proliferation. Cancer cells exposed to several stress factors (hypoxia, reactive oxygen species, cis-platin, and oxidative stress), and HO-1 displays cytoprotective role against oxidative stress and inhibits apoptosis, metastases, angiogenesis, and cell proliferation processes. Therefore, metal containing CO-releasing molecules (CORMs) have been designed as an effective cancer treatment strategy. CORMs are responsible for releasing controlled amounts of CO to cells and tissues. Thus, we synthesized [Mn(CO)(3)(bpy)L]X manganese containing CORMs [bpy=2,2-bipyridine, X=hexafluorophosphate (PF6), trifluoromethanesulfonate (OTf), L=imidazole, methylimidazole, benzimidazole, N-benzylbenzimidazole, N-(4-chlorobenzyl)benzimidazole] to release CO in human invasive ductal breast (MCF-7) cell line. In vitro experiments indicated that the compounds inhibited cell proliferation and exhibited cytotoxic effect on breast cancer cells. Moreover, side groups of the compounds enhanced the anticancer effects in MCF-7 cell line. These manganese containing CORMs gave promising results and may be used as a drug template for effective treatment of invasive ductal breast carcinoma. [GRAPHICS] .

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available