4.8 Article

Biocomposite macroporous cryogels as potential carrier scaffolds for bone active agents augmenting bone regeneration

Journal

JOURNAL OF CONTROLLED RELEASE
Volume 235, Issue -, Pages 365-378

Publisher

ELSEVIER
DOI: 10.1016/j.jconrel.2016.05.061

Keywords

Cryogel; Zoledronic acid; Biocomposite; Bone tissue engineering; Biomaterial

Funding

  1. Department of Biotechnology (DBT), Ministry of Science and Technology, Govt. of India [BT/PR14111/PBD/19/220/2010]
  2. Faculty of Medicine Lund University, Sweden

Ask authors/readers for more resources

Osteoinduction can be enhanced by combining scaffolds with bone morphogenic protein-2 (BMP-2). However, BMP's are known to also cause bone resorption. This can be controlled using bisphosphonates like zoledronic acid (ZA). In this study, we produced two different scaffolds containing silk-fibroin, chitosan, agarose and hydroxyapatite (HA) with and without bioactive glass. The aims of the study were to fabricate, physico-chemically characterize and evaluate the carrier properties of the scaffolds for recombinant human BMP-2 (rhBMP-2) and ZA. Scaffolds were characterized using various methods to confirm their composition. During cell-material interactions, both scaffolds exhibited gradual but sustained proliferation of both C2C12 and MSCs for a period of 6 weeks with augmentative effects on their phenotype indicated by elevated levels of alkaline phosphatase (ALP) cuing towards osteogenic differentiation. In-vitro effects of rhBMP-2 and ZA contained within both the scaffolds was assessed on MC3T3 preosteoblast cells and the results show a significant increase in the ALP activity of the cells seeded on scaffolds with rhBMP-2. Further, the scaffold with both HA and bioactive glass was considered for the animal study. In-vitro, this scaffold released nearly 25% rhBMP-2 in 21-days and the addition of ZA did not affect the release. In the animal study, the scaffolds were combined with rhBMP-2 and ZA, rhBMP-2 or implanted alone in an ectopic muscle pouch model. Significantly higher bone formation was observed in the scaffold loaded with both rhBMP-2 and ZA as seen from micro-computed tomography, histomorphometry and energy dispersive X-ray spectroscopy. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available