4.8 Article

In situ growth of a C-terminal interferon-alpha conjugate of a phospholipid polymer that outperforms PEGASYS in cancer therapy

Journal

JOURNAL OF CONTROLLED RELEASE
Volume 237, Issue -, Pages 71-77

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jconrel.2016.07.007

Keywords

Interferon-alpha; Protein-polymer conjugate; Protein delivery; Atom transfer radical polymerization

Funding

  1. National Natural Science Foundation of China [21274043, 21534006]

Ask authors/readers for more resources

Conjugating therapeutic proteins and peptides to poly(ethylene glycol) (PEG) can improve their pharmacokinetics and therapeutic potential. However, PEGylation suffers from non-specific conjugation, low yield and immunogenicity. Herein we report a new and general methodology to synthesize a protein-polymer conjugate with site-specificity, high yield and activity, long circulation half-life and excellent therapeutic efficacy. A phospholipid polymer, poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC), was grown solely from the C-terminus of interferon-alpha to form a site-specific (C-terminal) and stoichiometric (1: 1) PMPC conjugate of interferon-alpha in high yield. Notably, the PMPC conjugate showed 194- and 158-fold increases in systemic exposure and tumor uptake as compared with interferon-alpha, respectively. The in vitro antiproliferative bioactivity of the PMPC conjugate was 8.7-fold higher than that of PEGylated interferon-alpha (PEGASYS). In a murine cancer model, the PMPC conjugate completely inhibited tumor growth and cured 75% mice, whereas at the same dose, no mice treated with interferon-alpha or PEGASYS survived. We believe that this new approach to synthesize C-terminal protein conjugates of PMPC may be applicable to a large subset of protein and peptide drugs, thereby providing a general platform for the development of next-generation protein therapeutics. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available