4.7 Article

Hydrodynamic performance of oscillating elastic propulsors with tapered thickness

Journal

JOURNAL OF FLUID MECHANICS
Volume 944, Issue -, Pages -

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/jfm.2022.470

Keywords

swimming/flying; propulsion; flow-structure interactions

Funding

  1. National Science Foundation [CBET-1705739]
  2. Extreme Science and Engineering Discovery Environment (XSEDE) [TG-DMR180038]

Ask authors/readers for more resources

Using fluid-structure interaction computational modelling, this study investigates the hydrodynamic performance of bio-inspired elastic propulsors with tapered thickness that oscillate in an incompressible Newtonian fluid at Reynolds number Re = 2000. The simulations reveal that the tapered propulsors can outperform uniformly thick propulsors in terms of hydrodynamic efficiency and thrust by modulating the acoustic black hole effect. This enhanced performance is linked to the ability of the tapered propulsors to generate travelling waves with a large amplitude displacement at the trailing edge.
Using fluid-structure interaction computational modelling, the hydrodynamic performance of bio-inspired elastic propulsors with tapered thickness that oscillate in an incompressible Newtonian fluid at Reynolds number Re = 2000 is investigated. The thickness tapering leads to an acoustic black hole effect at the trailing edge of the propulsor that slows down and attenuates flexural waves, thereby minimizing the flexural wave reflection and enhancing travelling wave propulsion. The simulations reveal that, by tuning the propulsor thickness profile modulating the acoustic black hole effect, the tapered propulsors can be designed to vastly outperform the uniformly thick propulsors in terms of the hydrodynamic efficiency and thrust, especially for the post-resonance frequencies. The enhanced hydrodynamic performance is directly linked to the ability of the tapered propulsors to generate travelling waves with a large amplitude displacement at the trailing edge. The results have implications for the development of highly efficient bio-mimetic robotic swimmers and, more generally, the better understanding of the undulatory aquatic locomotion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available