4.8 Article

Non-specific binding and steric hindrance thresholds for penetration of particulate drug carriers within tumor tissue

Journal

JOURNAL OF CONTROLLED RELEASE
Volume 238, Issue -, Pages 139-148

Publisher

ELSEVIER
DOI: 10.1016/j.jconrel.2016.07.034

Keywords

Nanoparticles; PEG density; Tumor tissue penetration; Surface plasmon resonance (SPR); Multiple particle tracking (MPT); Intravital microscopy

Funding

  1. National Institutes of Health [K25EB018370, K08NS09043]
  2. Institutional Research Grant from the American Cancer Society [IRG-97-153-10]
  3. Passano Foundation Physician Scientist Award
  4. Elsa U. Pardee Foundation Research Grant
  5. PhRMA Foundation Research Starter Grant in Pharmaceutics
  6. AAPS Foundation New Investigator Grant Award
  7. NIGMS Initiative for Maximizing Student Development Grant [R25GM55036]

Ask authors/readers for more resources

Therapeutic nanoparticles (NPs) approved for clinical use in solid tumor therapy provide only modest improvements in patient survival, in part due to physiological barriers that limit delivery of the particles throughout the entire tumor. Here, we explore the thresholds for NP size and surface poly(ethylene glycol) (PEG) density for penetration within tumor tissue extracellular matrix (ECM). We found that NPs as large as 62 nm, but less than 110 nm in diameter, diffused rapidly within a tumor ECM preparation (Matrigel) and breast tumor xenograft slices ex vivo. Studies of PEG-density revealed that increasing PEG density enhanced NP diffusion and that PEG density below a critical value led to adhesion of NP to ECM. Non-specific binding of NPs to tumor ECM components was assessed by surface plasmon resonance (SPR), which revealed excellent correlation with the particle diffusion results. Intravital microscopy of NP spread in breast tumor tissue confirmed a significant difference in tumor tissue penetration between the 62 and 110 nm PEG-coated NPs, as well as between PEG-coated and un-coated NPs. SPR assays also revealed that Abraxane, an FDA-approved non-PEGylated NP formulation used for cancer therapy, binds to tumor ECM. Our results establish limitations on the size and surface PEG density parameters required to achieve uniform and broad dispersion within tumor tissue and highlight the utility of SPR as a high throughput method to screen NPs for tumor penetration. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available