4.5 Article

Enhanced retention of bacteria by TiO2 nanoparticles in saturated porous media

Journal

JOURNAL OF CONTAMINANT HYDROLOGY
Volume 191, Issue -, Pages 66-75

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jconhyd.2016.05.004

Keywords

Bacteria and TiO2 nanoparticle transport in porous media; Cotransport; DLVO

Ask authors/readers for more resources

The simultaneous transport of TiO2 nanoparticles and bacteria Pseudomonas aeruginosa in saturated porous media was investigated. Nanoparticle and bacterium size and surface charge were measured as a function of electrolyte concentration. Sand column breakthrough curves were obtained for single and combined suspensions, at four different ionic strengths. DLVO and classical filtration theories were employed to model the interactions between particles and between particles and sand grains. Attachment of TiO2 to the sand was explained by electrostatic forces and these nanoparticles acted as bonds between the bacteria and the sand, leading to retention. Presence of TiO2 significantly increased the retention of bacteria in the sand bed, but microorganisms were released when nanomaterial influx ceased. The inclusion of nanomaterials in saturated porous media may have implications for the design and operation of sand filters in water treatment. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available