4.7 Article

Curvature and temperature-dependent thermal interface conductance between nanoscale gold and water

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 157, Issue 5, Pages -

Publisher

AIP Publishing
DOI: 10.1063/5.0090683

Keywords

-

Funding

  1. National Institutes of Health
  2. [R35GM133653]

Ask authors/readers for more resources

This study investigates the heat transfer through nanoscale gold-water interfaces using atomistic molecular dynamics simulations. The researchers find that the thermal interface conductance increases linearly with interface curvature, regardless of gold wettability, and it increases nonlinearly with the applied heat flux under normal wetting. It remains constant under reduced wetting. The dependence on curvature may be linked to changes in interfacial water adsorption, while the temperature dependence may arise from shifts in the distribution of water vibrational states. This study advances our understanding of interface thermal conductance.
Plasmonic gold nanoparticles (AuNPs) can convert laser irradiation into thermal energy for a variety of applications. Although heat transfer through the AuNP-water interface is considered an essential part of the plasmonic heating process, there is a lack of mechanistic understanding of how interface curvature and the heating itself impact interfacial heat transfer. Here, we report atomistic molecular dynamics simulations that investigate heat transfer through nanoscale gold-water interfaces. We simulated four nanoscale gold structures under various applied heat flux values to evaluate how gold-water interface curvature and temperature affect the interfacial heat transfer. We also considered a case in which we artificially reduced wetting at the gold surfaces by tuning the gold-water interactions to determine if such a perturbation alters the curvature and temperature dependence of the gold-water interfacial heat transfer. We first confirmed that interfacial heat transfer is particularly important for small particles (diameter <= 10 nm). We found that the thermal interface conductance increases linearly with interface curvature regardless of the gold wettability, while it increases nonlinearly with the applied heat flux under normal wetting and remains constant under reduced wetting. Our analysis suggests the curvature dependence of the interface conductance coincides with changes in interfacial water adsorption, while the temperature dependence may arise from temperature-induced shifts in the distribution of water vibrational states. Our study advances the current understanding of interface thermal conductance for a broad range of applications. Published under an exclusive license by AIP Publishing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available