4.7 Article

Liquid-liquid criticality in the WAIL water model

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 157, Issue 2, Pages -

Publisher

AIP Publishing
DOI: 10.1063/5.0099520

Keywords

-

Funding

  1. Ministero Istruzione Universita Ricerca-Progetti di Rilevante Interesse Nazionale [2017Z55KCW]
  2. U.S. National Science Foundation [CHE-1856704]

Ask authors/readers for more resources

Recent experiments and numerical simulations have provided support to the hypothesis that a second critical point exists in deeply supercooled water. In particular, a study has found that a liquid-liquid critical point can be located using a model parameterized solely based on ab initio calculations. This finding is important for understanding the phase behavior of supercooled water.
The hypothesis that the anomalous behavior of liquid water is related to the existence of a second critical point in deeply supercooled states has long been the subject of intense debate. Recent, sophisticated experiments designed to observe the transformation between the two subcritical liquids on nano- and microsecond time scales, along with demanding numerical simulations based on classical (rigid) models parameterized to reproduce thermodynamic properties of water, have provided support to this hypothesis. A stronger numerical proof requires demonstrating that the critical point, which occurs at temperatures and pressures far from those at which the models were optimized, is robust with respect to model parameterization, specifically with respect to incorporating additional physical effects. Here, we show that a liquid-liquid critical point can be rigorously located also in the WAIL model of water [Pinnick et al., J. Chem. Phys. 137, 014510 (2012)], a model parameterized using ab initio calculations only. The model incorporates two features not present in many previously studied water models: It is both flexible and polarizable, properties which can significantly influence the phase behavior of water. The observation of the critical point in a model in which the water-water interaction is estimated using only quantum ab initio calculations provides strong support to the viewpoint according to which the existence of two distinct liquids is a robust feature in the free energy landscape of supercooled water.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available