4.6 Article

Shifting patterns of cellular energy production (adenosine triphosphate) over the day and key timings for the effect of optical manipulation

Journal

JOURNAL OF BIOPHOTONICS
Volume 15, Issue 10, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/jbio.202200093

Keywords

ATP; metabolism; mitochondria; near infrared light; photobiomodulation

Ask authors/readers for more resources

This study reveals daily shifts in whole animal ATP production, with a marked peak in the morning and lower levels in the afternoon and night. The findings suggest that long wavelength light can improve ATP production, but only at specific times.
Mitochondria are optically responsive organelles producing energy for cell function via adenosine triphosphate (ATP). But ATP production appears to vary over the day. Here we use Drosophila melanogaster to reveal daily shifts in whole animal ATP production in a tight 24 hours' time series. We show a marked production peak in the morning that declines around midday and remains low through afternoon and night. ATP production can be improved with long wavelengths (>660 nm), but apparently not at all times. Hence, we treated flies with 670 nm light to reveal optimum times. Exposures at 670 nm resulted in a significant ATP increases and a shift in the ATP/adenosine diphosphate (ADP) ratio at 8.00 and 11.00, whilst application at other time points had no effect. Hence, light-induced ATP increases appear limited to periods when natural production is high. In summary, long wavelength influences on mitochondria are conserved across species from fly to human. Determining times for their administration to improve function in ageing and disease are of key importance. This study progresses this problem.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available