4.7 Article

Unveiling the multitargeted potential of N-(4-Aminobutanoyl)-S-(4-methoxybenzyl)-L-cysteinylglycine (NSL-CG) against SARS CoV-2: a virtual screening and molecular dynamics simulation study

Journal

JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS
Volume 41, Issue 14, Pages 6633-6642

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/07391102.2022.2110158

Keywords

SARS-CoV-2; RNA-dependent polymerase; replication-transcription complex; molecular docking; MM; GBSA; molecular dynamics simulation

Ask authors/readers for more resources

The coronaviridae family has caused significant destruction worldwide, including the global pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). A drug called NSL-CG has been identified, which can target two major proteins of SARS-CoV-2. Molecular simulations have provided evidence of the drug's effectiveness. However, further experimental validation is required before human use.
The coronaviridae family has caused the most destruction among all the viral families in modern sciences. It is one of the recently discovered and added members of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which has caused the global pandemic and significant destruction worldwide. However, scientists worldwide have developed vaccines, which are being given to humans. The mutated strain of the virus has caused various uncertainties about whether the discovered drug and vaccines affect it. Even after the World Health Organization's approval for the vaccines, their effectiveness and protection ratio are still a major concern. At the community level, to this date, there is no medicine available to cure the patients. In this study, we have screened the vast library from Drug Bank and identified N-(4-Aminobutanoyl)-S-(4-methoxybenzyl)-L-cysteinylglycine (NSL-CG) that can work against two major targets of SARS CoV-2, replication-transcription and RNA dependent polymerase. Further, we have performed the Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) and molecular dynamics simulation of the compound with both proteins individually, giving us enough evidence that the said drugs can work against the two targets together. Inhibiting the action of any of both proteins may lead to retaining the virus, and having a dual-targeted drug can be an extra precise measure for this process. The NSL-CG is an experimental drug belonging to the peptidomimetics class included in the small group of drugs with a docking score of -9.079 kcal/mol with replication-transcription -7.885 kcal/mol with RNA-dependent polymerase. Hence, through the complete flowed study, the NSL-CG can be further experimentally validated in in-vitro and in-vivo conditions before human utilisation. Communicated by Ramaswamy H. Sarma

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available