4.6 Article

Mechanistic assessment of tolerance to iron deficiency mediated by Trichoderma harzianum in soybean roots

Journal

JOURNAL OF APPLIED MICROBIOLOGY
Volume 133, Issue 5, Pages 2760-2778

Publisher

WILEY
DOI: 10.1111/jam.15651

Keywords

antioxidant enzymes; beneficial fungus; Fe-efficiency; mineral deficiency; mycelial colonization

Funding

  1. Rajshahi University [5/52/RU/Bio-20/2019-2020]
  2. US Department of Energy [JLBDOE1924]
  3. Georgia Research Alliance

Ask authors/readers for more resources

The study found that Trichoderma harzianum strain T22 (TT) can alleviate growth retardation in iron-deficient soybean by increasing iron uptake and availability, enhancing iron mobility, and suppressing oxidative stress associated with iron deficiency. These findings suggest that the beneficial effects of TT on soybean are dependent on the presence of iron deficiency to some extent.
Aims Iron (Fe) deficiency in soil is a continuing problem for soybean (Glycine max L.) production, partly as a result of continuing climate change. This study elucidates how Trichoderma harzianum strain T22 (TH) mitigates growth retardation associated with Fe-deficiency in a highly sensitive soybean cultivar. Methods and Results Soil TH supplementation led to mycelial colonization and the presence of UAOX1 gene in roots that caused substantial improvement in chlorophyll score, photosynthetic efficiency and morphological parameters, indicating a positive influence on soybean health. Although rhizosphere acidification was found to be a common feature of Fe-deficient soybean, the upregulation of Fe-reductase activity (GmFRO2) and total phenol secretion were two of the mechanisms that substantially increased the Fe availability by TH. Heat-killed TH applied to soil caused no improvement in photosynthetic attributes and Fe-reductase activity, confirming the active role of TH in mitigating Fe-deficiency. Consistent increases in tissue Fe content and increased Fe-transporter (GmIRT1, GmNRAMP2a, GmNRAMP2b and GmNRAMP7) mRNA levels in roots following TH supplementation were observed only under Fe-deprivation. Root cell death, electrolyte leakage, superoxide (O-2(center dot-)) and hydrogen peroxide (H2O2) substantially declined due to TH in Fe-deprived plants. Further, the elevation of citrate and malate concentration along with the expression of citrate synthase (GmCs) and malate synthase (GmMs) caused by TH suggest improved chelation of Fe in Fe-deficient plants. Results also suggest that TH has a role in triggering antioxidant defence by increasing the activity of glutathione reductase (GR) along with elevated S-metabolites (glutathione and methionine) to stabilize redox status under Fe-deficiency. Conclusions TH increases the availability and mobilization of Fe by inducing Fe-uptake pathways, which appears to help provide resistance to oxidative stress associated with Fe-shortage in soybean. Significance and Impact of the Study These findings indicate that while Fe deficiency does not affect the rate or degree of TH hyphal association in soybean roots, the beneficial effects of TH alone may be Fe deficiency-dependent.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available