4.7 Article

A pharmacokinetic-pharmacodynamic (PKPD) model-based analysis of tedizolid against enterococci using the hollow-fibre infection model

Journal

JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY
Volume 77, Issue 9, Pages 2470-2478

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/jac/dkac183

Keywords

-

Ask authors/readers for more resources

This study assessed the pharmacokinetic-pharmacodynamic (PKPD) relationship for tedizolid against Enterococcus in the hollow-fibre infection model. The results indicated that the recommended human dose was insufficient to suppress bacterial growth.
Background Tedizolid is a novel oxazolidinone antibiotic. Considering the higher antibacterial effect in immunocompetent compared with immunosuppressed animals, it is not recommended in immunocompromised patients. Objectives In this study, we assessed the 'pure' pharmacokinetic-pharmacodynamic (PKPD) relationship for tedizolid against Enterococcus in the hollow-fibre infection model (HFIM). Methods Unbound plasma concentration time profiles (200-5000 mg/day IV) were simulated in the HFIM over 120 h against an Enterococcus faecalis strain and two clinical isolates of Enterococcus faecium (VRE-vanB and VRE-vanA). Next, a PKPD model describing tedizolid efficacy against bacterial isolates was developed. A population PK model was linked to the developed PKPD model and utilized to predict the bacterial kinetics in plasma and in target tissues [adipose, muscle, epithelial lining fluid (ELF) and sputum] over 120 h of therapy. Results The PKPD model adequately described the bacterial kill kinetics for all bacterial populations. At the human recommended dose of 200 mg/day, bacterial growth was predicted in plasma and all tissues, except for ELF. Bacteriostasis was observed only at a higher dose of 1200 mg/day over 120 h. An fAUC/MIC of 80 related to stasis over 120 h. Subpopulations resistant to 3 x MIC were amplified in plasma and target tissues, except for ELF, at doses of 200-800 mg/day. Conclusions The human dose of 200 mg/day was insufficient to suppress bacterial growth in the HFIM, indicating that further components contribute to the clinical effect of tedizolid. This study supports the warning/precaution for tedizolid to limit its use in immunocompromised patients.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available