4.4 Article

Determination of groundwater potential zones using geographic information systems and remote sensing in Lupane District, Zimbabwe

Journal

IRRIGATION AND DRAINAGE
Volume 71, Issue 5, Pages 1319-1331

Publisher

WILEY
DOI: 10.1002/ird.2741

Keywords

energy and food nexus; GIS; groundwater potential zones; Lupane district; water

Ask authors/readers for more resources

Groundwater is a crucial natural resource, and this article maps the potential groundwater zones in the Lupane district using GIS, remote sensing, and AHP techniques. The results indicate that the majority of the district has good potential, serving as a useful reference for selecting suitable sites for groundwater exploitation.
Groundwater is a vital natural resource for agricultural, domestic and industrial uses. Understanding the spatial distribution of groundwater resources is critical to improving the relationship between water, food and energy. This article uses GIS and remote sensing and the analytical hierarchy process (AHP) technique to map the potential groundwater zones in the Lupane district. Lineaments, drainage density, slope, soil type, geology and land use land cover (LULC) were used to create thematic maps in ArcMap. The thematic maps were weighted and ranked according to their influence on the movement and occurrence of groundwater. To validate the groundwater potential zones (GWPZs) model, we used LULC and 675 perennial and seasonal boreholes in the Lupane district. The LULC and borehole maps were overlaid on the modelled GWPZ map to highlight their distribution. The GWPZ results show that areas with good potential make up the majority of the district (41%), followed by areas with moderate potential (30%), poor potential (14%), very good potential (13%) and very poor potential (2%). The results showed that 74% (499) of perennial boreholes overlapped the zones with good, moderate and/or very good groundwater potential. The GWPZ map can therefore be used as a preliminary reference when selecting suitable sites for the exploitation of groundwater resources. Further testing of the model using both seasonal and year-round yields and depths from boreholes is recommended.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available