4.4 Article

Multipole moments for embedding potentials: Exploring different atomic allocation algorithms

Journal

JOURNAL OF COMPUTATIONAL CHEMISTRY
Volume 37, Issue 20, Pages 1887-1896

Publisher

WILEY-BLACKWELL
DOI: 10.1002/jcc.24403

Keywords

distributed multipole moments; electrostatic potential; QM; MM embedding

Funding

  1. Danish Council for Independent Research (DFF) through the Sapere Aude research career program
  2. Danish Council for Independent Research (the Sapere Aude program)
  3. Villum Foundation
  4. Lundbeck Foundation

Ask authors/readers for more resources

Polarizable quantum mechanical (QM)/molecular mechanics (MM)-embedding methods are currently among the most promising methods for computationally feasible, yet reliable, production calculations of localized excitations and molecular response properties of large molecular complexes, such as proteins and RNA/DNA, and of molecules in solution. Our aim is to develop a computational methodology for distributed multipole moments and their associated multipole polarizabilities which is accurate, computationally efficient, and with smooth convergence with respect to multipole order. As the first step toward this goal, we herein investigate different ways of obtaining distributed atom-centered multipole moments that are used in the construction of the electrostatic part of the embedding potential. Our objective is methods that not only are accurate and computationally efficient, but which can be consistently extended with site polarizabilities including internal charge transfer terms. We present a new way of dealing with well-known problems in relation to the use of basis sets with diffuse functions in conventional atomic allocation algorithms, avoiding numerical integration schemes. Using this approach, we show that the classical embedding potential can be systematically improved, also when using basis sets with diffuse functions, and that very accurate embedding potentials suitable for QM/MM embedding calculations can be acquired. (c) 2016 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available