4.7 Article

A hybrid technique based energy management in hybrid electric vehicle system

Journal

INTERNATIONAL JOURNAL OF ENERGY RESEARCH
Volume 46, Issue 11, Pages 15499-15520

Publisher

WILEY
DOI: 10.1002/er.8248

Keywords

energy management system; fuel consumption; hybrid electric vehicle; parametric investigation

Ask authors/readers for more resources

In this article, a novel hybrid method combining the Kernel Wingsuit Flying Search Algorithm and Sea Lion Optimization Algorithm is proposed to optimize energy management in a hybrid electric vehicle system. Through parameter investigation and performance evaluation, the proposed method is shown to be more efficient in reducing fuel consumption.
In this article, a novel hybrid method is proposed to optimally manage the energy for a hybrid electric vehicle system. The proposed technique is the joint execution of both the Kernel Wingsuit Flying Search Algorithm and Sea Lion Optimization Algorithm, hence it is called WF2SLOA. The main objective of the WF2SLOA method is integrated in the energy management system to split the torque between the engine and electric machine. During the WF2SLOA-based energy management development, this article performs a parametric investigation on numerous main factors, such as state types and number of states, states and action discretization, exploration and exploitation, and learning experience selection. The proposed method is implemented in MATLAB/Simulink, and the performance is assessed with the existing methods. Consequently, the outcomes illustrate that the selection of the learning experience can diminish the fuel consumption of the vehicle. Furthermore, the states and action discretization study indicates the fuel consume of the vehicle diminishes as action discretization enhances while raising the states discretization is harmful to the fuel consume. The maximizing count of states also raises the economy of fuel. Thus, the simulation outcomes show that the performance of the proposed method is more efficient than the existing methods. The mean, median, and SD of the WF2SLOA method attains 1.5420, 1.5043, and 0.0509.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available