4.7 Article

Graptolite reflectance anomaly

Journal

INTERNATIONAL JOURNAL OF COAL GEOLOGY
Volume 261, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.coal.2022.104072

Keywords

Graptolite reflectance; Lower Paleozoic; Gas -generation window; Organic pores

Funding

  1. Chinese Scholarship Council (CSC)

Ask authors/readers for more resources

This study investigates the anomalous breakdown in the gradient of graptolite reflectance (GR) versus thermal maturity during artificial maturation of the Alum Shale. The suppressed GR gradient is attributed to the generation and evasion of hydrocarbon gases that cause nano-porosity vacuolation of the graptolite tissues. Applying a linear conversion formula between random GR and vitrinite reflectance (VRo) directly may lead to an underestimation of thermal maturity.
Thermal maturation is traditionally evaluated based on vitrinite reflectance (VRo) measurements and its relationship to oil and gas generation and diagenetic transformation are ingrained in many basin modeling tools. However, vitrinite derives from higher land plants that evolved in Devonian. In pre-Devonian rocks graptolite reflectance (GR) is the most significant thermal index for establishing thermal maturation. Currently, conversions of GR to VRo equivalent rely on several established linear relationships. This study investigates a continuous thermal evolution of GR during artificial maturation of the Lower Ordovician (Tremadocian) Alum Shale of Estonia. We observe an anomalous breakdown in the gradient of GR versus thermal maturity. The anomaly trend is characterized as a suppressed GR gradient throughout the entire gas window (VRo: 1.0-2.0%). We attribute the suppressed measured GR trend to surface imperfection caused by the generation and evasion of hydrocarbon gases that generate nano-porosity vacuolation of the graptolite tissues. After the gas window, GR resumes its increasing trend with a similar gradient as observed in the pre-gas window, due to continued aromatization and condensation of the organic molecules. The GR anomaly indicates a potential underestimation of thermal maturity up to 0.52%VRo when applying a linear conversion formula between random GR and VRo directly. Therefore, a significant maturity correction should be applied to all legacy GR-based maturity measurements that indicate a gas or post-gas maturity rank.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available