4.4 Article

The Comparative Approach to Bio-Inspired Design: Integrating Biodiversity and Biologists into the Design Process

Journal

INTEGRATIVE AND COMPARATIVE BIOLOGY
Volume 62, Issue 5, Pages 1153-1163

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1093/icb/icac097

Keywords

-

Categories

Funding

  1. National Aeronautics and Space Administration (NASA) [80NSSC18P2131]

Ask authors/readers for more resources

Biodiversity provides a rich source of innovation for bio-inspired design, but considering the large number of species can be overwhelming. The champion adapter approach, although beneficial, tends to focus on a narrow set of popular models while neglecting the majority of species. The comparative method, on the other hand, leverages biodiversity by drawing inspiration from a wide range of species.
Biodiversity provides a massive library of ideas for bio-inspired design, but the sheer number of species to consider can be daunting. Current approaches for sifting through biodiversity to identify relevant biological models include searching for champion adapters that are particularly adept at solving a specific design challenge. While the champion adapter approach has benefits, it tends to focus on a narrow set of popular models while neglecting the majority of species. An alternative approach to bio-inspired design is the comparative method, which leverages biodiversity by drawing inspiration across a broad range of species. This approach uses methods in phylogenetics to map traits across evolutionary trees and compare trait variation to infer structure-function relationships. Although comparative methods have not been widely used in bio-inspired design, they have led to breakthroughs in studies on gecko-inspired adhesives and multifunctionality of butterfly wing scales. Here we outline how comparative methods can be used to complement existing approaches to bio-inspired design, and we provide an example focused on bio-inspired lattices, including honeycomb, and glass sponges. We demonstrate how comparative methods can lead to breakthroughs in bio-inspired applications as well as answer major questions in biology, which can strengthen collaborations with biologists and produce deeper insights into biological function.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available