4.3 Article

Net Inflow: An Important Target on the Path to Aquifer Sustainability

Journal

GROUNDWATER
Volume 61, Issue 1, Pages 56-65

Publisher

WILEY
DOI: 10.1111/gwat.13233

Keywords

-

Ask authors/readers for more resources

Aquifers supporting irrigated agriculture are globally important, but many of these systems are under pumping-induced stress. Reducing pumping and considering net inflow is crucial for sustainability and calibration of groundwater models.
Aquifers supporting irrigated agriculture are a resource of global importance. Many of these systems, however, are experiencing significant pumping-induced stress that threatens their continued viability as a water source for irrigation. Reductions in pumping are often the only option to extend the lifespans of these aquifers and the agricultural production they support. The impact of reductions depends on a quantity known as net inflow or capture. We use data from a network of wells in the western Kansas portions of the High Plains aquifer in the central United States to demonstrate the importance of net inflow, how it can be estimated in the field, how it might vary in response to pumping reductions, and why use of net inflow may be preferred over capture in certain contexts. Net inflow has remained approximately constant over much of western Kansas for at least the last 15 to 25 years, thereby allowing it to serve as a target for sustainability efforts. The percent pumping reduction required to reach net inflow (i.e., stabilize water levels for the near term [years to a few decades]) can vary greatly over this region, which has important implications for groundwater management. However, the reduction does appear practically achievable (less than 30%) in many areas. The field-determined net inflow can play an important role in calibration of regional groundwater models; failure to reproduce its magnitude and temporal variations should prompt further calibration. Although net inflow is a universally applicable concept, the reliability of field estimates is greatest in seasonally pumped aquifers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available