4.4 Article

Investigation of mechanical, thermal and surface properties of nanoclay/HDPE nanocomposites produced industrially by melt mixing approach

Journal

JOURNAL OF COMPOSITE MATERIALS
Volume 50, Issue 22, Pages 3105-3116

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/0021998315615653

Keywords

Nanoclay; tensile properties; HDPE; nanocomposite; flexural properties; melt mixing method; industrial-scale; thermal properties; scratch test

Funding

  1. Selcuk University Scientific Research Projects [1310102]
  2. Selcuk University

Ask authors/readers for more resources

The main aim of this paper is to introduce mechanical, thermal and surface properties of produced industrially HDPE-based nanocomposites. For this purpose, 1.0, 2.0, 3.0, 4.0 and 5.0wt.% loading of nanoclay-reinforced HDPE nanocomposites made from the HDPE matrix were prepared by the melt mixing method using a compounder system, which consist of industrial banbury mixer, single screw extruder and granule cutting. The effect of nanoclay on mechanical, thermal and surface properties of nanoclay/HDPE nanocomposites was investigated. The tensile and flexural strength of nanoclay/HDPE nanocomposite increased by about 5% and 7%, respectively, with addition of 1.0wt.% nanoclay. But then it decreased slightly as the nanoclay content increased to 5.0wt.%. The tensile modulus and tensile elongation were decreased with the addition of 1.0wt.% nanoclay, but did not increase further as more nanoclay was added. The flexural modulus of HDPE was significantly improved after (from 1.0wt.% up to 5.0wt.%) addition of nanoclay. It was found that the scratch resistance of nanoclay/HDPE nanocomposite improved with addition of the nanoclay by SEM examination. Density, melting flow index (MFI), differential scanning colorimetry (DSC), and vicat softening temperature (VICAT) were used to characterize the physical and thermal properties of the nanocomposites. The X-ray diffraction (XRD), the Fourier transform infrared spectrophotometry (FTIR), and the scanning electron microscopy (SEM) were used to analyze the structural characteristics of the nanocomposites. It is concluded that the addition of the nanoclay in HDPE has significantly influenced the mechanical, thermal, and surface properties of the nanocomposites.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available