4.5 Article

Replicating and redesigning ankle-foot orthoses with 3D printing for children with Charcot-Marie-Tooth disease

Journal

GAIT & POSTURE
Volume 96, Issue -, Pages 73-80

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.gaitpost.2022.05.006

Keywords

Inherited neuropathy; Additive manufacturing; Assistive devices; Gait analysis; 3D printing

Funding

  1. Charcot-Marie-Tooth Association of Australia Grant Scheme
  2. Industry and Community Engagement Fund, University of Sydney
  3. Research Training Program Stipend Ph.D., Commonwealth Government of Australia

Ask authors/readers for more resources

This study aims to determine how 3D printing can be used to replicate and redesign ankle-foot orthoses (AFOs) in children with Charcot-Marie-Tooth disease (CMT). The study found that 3D printing can replicate traditional handmade AFOs and produce a lighter device with improved biomechanics by incorporating novel design features.
Background: Children with the most common inherited neuropathy, Charcot-Marie-Tooth disease (CMT), are often prescribed ankle-foot orthoses (AFOs) to improve walking ability and prevent falls by reducing foot drop, postural instability, and other gait impairments. These externally worn assistive devices are traditionally custommade using thermoplastic vacuum forming. This labour-intensive manufacturing process often results in AFOs which are cumbersome due to limited design options, and are associated with low acceptability, discomfort, and suboptimal impact on gait. The aim of this study was to determine how 3D printing can be used to replicate and redesign AFOs in children with CMT.Methods: Traditional AFOs, 3D printed replica AFOs (same design as traditional AFOs), 3D printed redesigned AFOs and a shoes only control condition were compared in 12 children with CMT. 3D printed AFOs were manufactured using material extrusion in Nylon-12. 3D gait analysis (temporal-spatial, kinematic, kinetic), in shoe pedobarography and self-reported satisfaction were used to compare conditions. The primary kinematic and kinetic outcome measures were maximum ankle dorsiflexion in swing and maximum ankle dorsiflexor moment in loading response, to capture foot drop and an absent of heel rocker.Results: The 3D printed replica AFOs were comparable to traditional AFOs for all outcomes. The 3D printed replica AFOs improved foot position at initial contact and during loading response and significantly reduced pressure beneath the whole foot, rearfoot and forefoot compared to the shoes only. The 3D printed redesigned AFOs produced a device that was significantly lighter (mean-35.2, SD 13.3%), and normalised maximum ankle dorsiflexor moment in loading response compared to shoes only and traditional AFOs. Significance: 3D printing can be used to replicate traditional handmade AFOs and to redesign AFOs to produce a lighter device with improved biomechanics by incorporating novel design features.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available