4.7 Article

Quantitative structure-property relationships of thermoset pea protein gels with ethanol, shear, and sub-zero temperature pretreatments

Journal

FOOD HYDROCOLLOIDS
Volume 135, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.foodhyd.2022.108066

Keywords

Pea protein; Cold denaturation; Quantitative structure - Property relationships (QSPR); FTIR; Gelation; Bioinformatics

Ask authors/readers for more resources

This study investigated the modification of pea protein structure and its impact on gel formation. The results showed that applying shear forces at low temperatures in ethanol led to the formation of hydrophobically bound gels, which may be used to produce low-fat food products with desired textures.
Pea protein is often processed to alter the protein's native structure, enhancing desirable textures in meat and dairy analog products. Cold denaturation is a universal phenomenon in protein that exposes hydrophobic amino acids, though little information exists about this in food science research. In this work, ethanol, shear forces, and low temperatures were used to modify the structure of commercial pea protein isolate, and impacts on gelation are characterized. Treatment at -10 degrees C in ethanol with applied shear forces led to gels with the lowest tan delta values during temperature ramps and frequency sweeps. A quantitative structure-property relationship (QSPR) method found that hydrogen bonding can be derived from secondary structure (R-2 = 0.960), and hydrogen bonding correlated with the temperature dependence of G' during cooling in treatments. This work suggests cold denaturation forms hydrophobically bound gels that may aid in replacing fatty textures, and a QSPR framework aids in interpreting rheological data.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available