4.3 Article

The response of claudin-like transmembrane septate junction proteins to altered environmental ion levels in the larval mosquito Aedes aegypti

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00360-016-0979-z

Keywords

Mosquito; Osmoregulation; Septate junctions; Claudins; Neurexin IV; Salinity

Funding

  1. Natural Sciences and Engineering Research Council of Canada
  2. Ontario Graduate Scholarship

Ask authors/readers for more resources

Septate junctions (SJs) occlude the paracellular pathway and function as paracellular diffusion barriers within invertebrate epithelia. However, integral components of SJs and their contribution to barrier properties have received considerably less attention than those of vertebrate occluding junctions. In arthropods, SJ proteins have only been identified in Drosophila and among these are three integral claudin-like proteins, Megatrachea (Mega), Sinuous (Sinu) and Kune-kune (Kune), as well as a receptor-like transmembrane SJ protein known as Neurexin IV (Nrx IV). In this study, mega, sinu, kune and nrx IV are identified and characterized in aquatic larvae of the mosquito Aedes aegypti and a role for these proteins in ionoregulatory homeostasis is considered. Transcripts encoding Mega, Sinu, Kune and Nrx IV were found in iono/osmoregulatory tissues such as the midgut, Malpighian tubules, hindgut and anal papillae, but abundance was greater in the hindgut and anal papillae. Using immunohistochemical and western blot analysis it was found that Kune localized to the regions of intercellular contact between epithelial cells of the rectum and posterior midgut and in the apical membrane domain of the syncytial epithelium of anal papillae. To investigate a potential role for integral SJ proteins in larval A. aegypti iono/osmoregulation, abundance was examined in animals reared in freshwater or brackish water (30 % seawater). In iono/osmoregulatory epithelia, larvae exhibited tissue-specific alterations in mega mRNA and Kune protein abundance, but not sinu or nrx IV mRNA. These studies provide a first look at the potential contribution of integral SJ components to iono/osmoregulatory homeostasis in an aquatic invertebrate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available