4.4 Article

Pesticides removal from water using activated carbons and carbon nanotubes

Journal

ENVIRONMENTAL TECHNOLOGY
Volume -, Issue -, Pages -

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/09593330.2022.2112979

Keywords

Pulverized activated carbon; adsorption; granular activated carbon; carbon nanotubes; adsorbent application

Funding

  1. CAPES [001]
  2. CNPQ [001]

Ask authors/readers for more resources

The combination of pulverized activated carbon, granular activated carbon, and carbon nanotubes with conventional water treatment technique can efficiently remove atrazine, simazine, and diuron. Chemical interaction, contact time, and point application are critical factors affecting the removal efficiency.
The conventional water treatment technique (CT) widely applied cannot alone remove pesticides efficiently from water. Therefore, this work aimed to provide technical and scientific support for the association of pulverized activated carbon (PACs), granular activated carbon (GACs), and carbon nanotubes (CNT) with CT concerning atrazine (ATZ), simazine (SMZ), and diuron (DIU) removal. Actual conditions of pre/during, and post-treatment points of application, within water production process line, in water treatment plants (WTPs), using the pesticides in two forms, commercial product (CP) and analytical standard (SD). It was possible to demonstrate significant differences regarding the removal of ATZ, SMZ, and DIU in their SD and CP forms for the PACs, GACs, and CNTs. The minimum dosage of CNT required for adequate adsorption of all pesticides was superior to 160 mg. L-1; is 400% higher than the minimum dosage of 40 mg. L-1 is required for PAC application. ATZ, SMZ, and DIU in the SD form were more efficiently removed with percentages superior to 96.4% for ATZ, 98.2% for SMZ, and 99.1% for DIU. The characteristics of the adsorptive materials did not guide the adsorption efficacy. Instead, chemical interaction, contact time, and point application were critical factors. The pre-treatment and post-treatment applications were the most efficient, with removals oscillating from 97.7% to 100% for ATZ, 97.7% to 100% for SMZ, and 99.1 to 100% for DIU PAC and GAC, respectively.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available