4.7 Review

Heavy metals research in Nigeria: a review of studies and prioritization of research needs

Journal

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
Volume 29, Issue 44, Pages 65940-65961

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-022-22174-x

Keywords

Heavy metals; Nigeria; Environment; Research scope; Research needs; Human exposure

Ask authors/readers for more resources

Nigeria is facing serious environmental heavy metal contamination, but research on important toxic metals is lacking. More studies are needed in the northern region and marine environments. Techniques like ICP-OES and PIXE can be used to bridge the data gap and overcome limitations in trace metal analysis.
Nigeria is experiencing continuous economic and industrial transformations, typical of many developing nations. In addition to its well-established oil industry, which is infamous for exuding various kinds of pollutants, there are increased mining operations, indiscriminate disposal and burning of wastes, illegal oil refinery and terroristic insurgency, all poised to increase the levels of heavy metal contaminants in the Nigerian environment. A recent revelation indicates that about 2 million people in South-western Nigeria alone could potentially be poisoned by lead (Pb) and mercury (Hg), emanating from illegal mining operations. This further underscores the importance of investigations of toxic trace metal levels in the country. The current review of 148 research articles was conducted to provide an understanding of the scope of heavy metals research in Nigeria and to prioritize needed research. The review recognized that the scope of heavy metals studies has been wide, covering matrices such as cosmetics, human blood, hair, medicines, foods, beverages, water, air, soil and crude oil. However, important toxic metals, especially mercury (Hg), arsenic (As) and antimony (Sb), are largely under-investigated. Also, there is a need for more studies to be conducted in the northern part of the country. Furthermore, studies need to focus on marine environments rather than the freshwater ecosystems alone. Techniques such as the inductively coupled plasma-optical emission spectrometry (ICP-OES) and particle-induced X-ray emission (PIXE) analyses are herein recommended to bridge the data gap and to overcome limitations in trace metals analyses in the Nigerian total environment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available