4.7 Article

Contrasting resistance of polycyclic aromatic hydrocarbons to atmospheric oxidation influenced by burning conditions

Journal

ENVIRONMENTAL RESEARCH
Volume 211, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.envres.2022.113107

Keywords

Biomass burning emission; Flaming and smoldering; Polycyclic aromatic hydrocarbons; Black carbon; Organic aerosol; Atmospheric oxidation

Funding

  1. National Natural Science Foundation of China [42175116]

Ask authors/readers for more resources

The oxidation of polycyclic aromatic hydrocarbons (PAHs) determines their lifetime, toxicity, and environmental impact. The oxidation rate of PAHs is influenced by the mixing state of particles. Larger PAHs with substantial amounts of black carbon (BC) internally mixed with organic aerosol (OA) were rapidly oxidized under solar radiation, while larger PAHs with externally mixed OA tended to remain unmodified during the evolution.
The oxidation of polycyclic aromatic hydrocarbons (PAHs) determines their lifetime, toxicity and consequent environmental and climate impacts. The residential solid fuel burning composes of a substantial fraction of PAH emissions; however, their oxidation rate is yet to be explicitly understood, which is complicated by the contrasting emission factors under different combustion conditions and their subsequent evolution in the atmosphere. Here we used a plume evolution chamber using ambient oxidants to simulate the evolution of residential solid fuel burning emissions under real-world solar radiation, and then to investigate the oxidation process of the emitted PAHs. Contrasting oxidation rate of PAHs was found to be influenced by particles with or without presence of substantial amount of black carbon (BC). In the flaming burning phase, which contained 46% of BC mass fraction and 8% of organic aerosol (OA) internally mixed with BC, the larger PAHs (with 4-7 rings) was rapidly oxidized 12% for every hour of evolution under solar radiation; however, the larger PAHs from smoldering phase tended to maintain unmodified during the evolution, when 95% of OA was externally mixed with only minor fraction of BC (< 5%). This may be ascribed to the complex morphology of BC, allowing more exposure for the internally-mixed OA to the oxidants; in contrast with those externally-mixed OA which was prone to be coated by condensed secondary substances. This raises an important consideration about the particle mixing state in influencing the oxidation of PAHs, particularly the coating on PAHs which may extend their lifetime and environmental impacts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available