4.7 Review

Metabolic syndrome and pesticides: A systematic review and meta-analysis

Journal

ENVIRONMENTAL POLLUTION
Volume 305, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2022.119288

Keywords

Metabolic syndrome; Pesticide; Exposure; Public health; Systemic review; Meta-analysis; Meta-regression

Ask authors/readers for more resources

The study found that there is a relationship between pesticide exposure and metabolic syndrome. Exposure to pesticides and their contaminants increases the risk of metabolic syndrome, especially for organochlorines. The use of pesticides worldwide may be increasing over time. There is also an inverse relationship between body mass index and male gender.
The relation between pesticides exposure and metabolic syndrome (MetS) has not been clearly identified. Performing a systematic review and meta-analysis, PubMed, Cochrane Library, Embase, and ScienceDirect were searched for studies reporting the risk of MetS following pesticides exposure and their contaminants. We included 12 studies for a total of 6789 participants, in which 1981 (29.1%) had a MetS. Overall exposure to pesticides and their contaminants increased the risk of MetS by 30% (95CI 22%-37%). Overall organochlorine increased the risk of MetS by 23% (14-32%), as well as for most types of organochlorines: hexa-chlorocyclohexane increased the risk by 53% (28-78%), hexachlorobenzene by 40% (0.01-80%), dichlorodiphenyldichloroethylene by 22% (9-34%), dichlorodiphenyltrichloroethane by 28% (5-50%), oxychlordane by 24% (1-47%), and transnonchlor by 35% (19-52%). Sensitivity analyses confirmed that overall exposure to pesticides and their contaminants increased the risk by 46% (35-56%) using crude data or by 19% (10-29%) using fully-adjusted model. The risk for overall pesticides and types of pesticides was also significant with crude data but only for hexachlorocyclohexane (36% risk increase, 17-55%) and transnonchlor (25% risk increase, 3-48%) with fully-adjusted models. Metaregressions demonstrated that hexachlorocyclohexane increased the risk of MetS in comparison to most other pesticides. The risk increased for more recent periods (Coefficient = 0.28, 95CI 0.20 to 0.37, by year). We demonstrated an inverse relationship with body mass index and male gender. In conclusion, pesticides exposure is a major risk factor for MetS. Besides organochlorine exposure, data are lacking for other types of pesticides. The risk increased with time, reflecting a probable increase of the use of pesticides worldwide. The inverse relationship with body mass index may signify a stockage of pesticides and contaminants in fat tissue.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available