4.6 Article

Lasiodiplodia theobromae protein LtScp1 contributes to fungal virulence and protects fungal mycelia against hydrolysis by grapevine chitinase

Journal

ENVIRONMENTAL MICROBIOLOGY
Volume 24, Issue 10, Pages 4670-4683

Publisher

WILEY
DOI: 10.1111/1462-2920.16155

Keywords

-

Categories

Funding

  1. National Natural Science Foundation [31901958]
  2. Outstanding Scientist Project of Beijing Academy of Agriculture and Forestry Sciences [JKZX201905]
  3. Beijing Talent Program for Jiye Yan
  4. National Technology System for Grape Industry [CARS-29]

Ask authors/readers for more resources

The LtScp1 protein in L. theobromae is highly expressed during the infectious stages and acts as a virulence factor to protect the fungus from degradation. It interacts with chitinase to interfere with its chitin-binding ability.
The LysM proteins have been reported to be important for the virulence and host immunity suppression in herbaceous plant pathogens, whereas far less information is documented in the woody plant pathogen Lasiodiplodia theobromae. To investigate the functional mechanism of LysM protein in L. theobromae, one gene LtScp1 was cloned and characterized detailedly in the current study. Transcription profiling revealed that LtScp1 was highly expressed at the infectious stages. Compared to wild type, overexpression and silencing of LtScp1 in L. theobromae led to significantly increased and decreased lesion areas, respectively. Moreover, LtScp1 was determined to be a secreted protein via a yeast signal peptide trapping system. Interestingly, LtScp1 was confirmed to be modified by the N-glycosylation, which is necessary for the homodimerization of LtScp1 molecules. Furthermore, it was found that LtScp1 interacted with the grapevine chitinase VvChi4 and interfered the ability of VvChi4 to bind chitin. Collectively, these results suggest that LtScp1 functions as a virulence factor to protect the fungus from degradation during the infection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available