4.6 Article

Organophosphate tri- and diesters in source water supply and drinking water treatment systems of a metropolitan city in China

Journal

ENVIRONMENTAL GEOCHEMISTRY AND HEALTH
Volume 45, Issue 5, Pages 2401-2414

Publisher

SPRINGER
DOI: 10.1007/s10653-022-01333-6

Keywords

Organophosphate esters; Distribution characteristics; Elimination efficiency; Risk assessment

Ask authors/readers for more resources

The distribution and removal efficiency of organophosphate ester pollutants vary in water sources and treatment facilities. Some of these esters pose limited ecological risks while others may have potential health implications.
The water contaminations with organophosphate triesters (tri-OPEs) and diesters (di-OPEs) have recently provoked concern. However, the distributions of these compounds in natural water sources and artificial water treatment facilities are poorly characterized. A comprehensive study was therefore performed to measure their concentrations in a water source, a long-distance water pipeline, and a drinking water treatment plant (DWTP). Eight tri-OPEs and 3 di-OPEs were found to be widely distributed, with total concentrations in source water and pipelines ranging from 290.6 to 843.9 ng/L. The most abundant pollutants were tris(1-chloro-2-propyl) phosphate (TCPP), triethyl phosphate, tri-n-butyl phosphate (TnBP), and diphenyl phosphate (DPhP). Di-OPEs appeared to be removed less efficiently in the DWTP than the parent tri-OPEs, and the elimination efficiencies of tri-OPEs were structure-dependent. Long-distance pipeline transportation had no significant effect on the distributions of tri- and di-OPEs. Statistical analysis suggested that the sources of di-OPEs and the corresponding tri-OPEs differed, as did those of DPhP and di-n-butyl phosphate. A risk analysis indicated that tri-OPEs present limited ecological risks that are mainly due to TnBP and TCPP, and that the human health risks of tri-OPEs are negligible. However, di-OPEs (especially DPhP) may increase these risks. Further studies on the risks posed by di-OPEs in aquatic environments are therefore needed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available