4.7 Article

Nonlocal strain gradient analysis of FG GPLRC nanoscale plates based on isogeometric approach

Journal

ENGINEERING WITH COMPUTERS
Volume 39, Issue 1, Pages 857-866

Publisher

SPRINGER
DOI: 10.1007/s00366-022-01689-4

Keywords

Nonlocal strain gradient theory (NSGT); Length scale effects; NURBS basis function; Graphene platelets (GPLs); Nanoscale plates

Ask authors/readers for more resources

This paper investigates the free vibration analysis of functionally graded graphene platelet-reinforced composites (FG GPLRC) plates using a nonlocal strain gradient isogeometric model based on the higher order shear deformation theory. Various distributed patterns of graphene platelets (GPLs) are considered, and the effects of different parameters on the natural frequencies of the nanoplates are examined. The results obtained in this study can serve as benchmark results for further research on FG GPLRC nanoplates.
In this paper, a nonlocal strain gradient isogeometric model based on the higher order shear deformation theory for free vibration analysis of functionally graded graphene platelet-reinforced composites (FG GPLRC) plates is performed. Various distributed patterns of graphene platelets (GPLs) in the polymer matrix including uniform and non-uniform are considered. To capture size dependence of nanostructures, the nonlocal strain gradient theory including both nonlocal and strain gradient effects is used. Based on the modified Halpin-Tsai model, the effective Young's modulus of the nanocomposites is expressed, while the Poisson's ratio and density are established using the rule of mixtures. Natural frequencies of FG GPLRC nanoplates is determined using isogeometric analysis. The effects played by strain gradient parameter, distributions of GPLs, thickness-to-length ratio, and nonlocal parameter are examined, and results illustrate the interesting dynamic phenomenon. Several results are investigated and considered as benchmark results for further studies on the FG GPLRC nanoplates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available