4.5 Article

Biomass-Based Renewable Energy Community: Economic Analysis of a Real Case Study

Journal

ENERGIES
Volume 15, Issue 15, Pages -

Publisher

MDPI
DOI: 10.3390/en15155655

Keywords

smart energy community; renewable energy community; biomass-based cogeneration system; district heating network

Categories

Funding

  1. RSE S.p.A.
  2. Ministry of Economic Development-General Directorate for the Electricity Market, Renewable Energy and Energy Efficiency, Nuclear Energy

Ask authors/readers for more resources

This study defines a model for analyzing energy systems in renewable energy communities and applies it to the economic feasibility analysis of a renewable energy community in Tirano, Italy. The results show that wood-biomass-based renewable energy communities are economically feasible and can contribute to renewable technologies beyond photovoltaics.
Renewable energy communities are catalysts of social innovation, the citizens' engagement in energy actions, and the exploitation of local resources. Thus, this paper defines a model for analyzing and optimally sizing energy systems serving renewable energy communities. Then, the proposed and replicable model was tailored to the economic feasibility analysis of a renewable energy community in the municipality of Tirano (Northern Italy). An energy audit was carried out to identify the electricity production and consumption within the perimeter of the primary substation and the thermal energy demand of the existing district heating network. The technical features of the energy conversion systems serving the renewable energy community were determined: an organic Rankine cycle biomass-based cogeneration plant, a mini-hydro plant, and a distributed photovoltaic system. Moreover, several different scenarios have been identified, in terms of cogeneration operating mode, photovoltaic penetration, and thermal energy economic value. The results show that, moving from 4.22 MW to 5.22 MW of photovoltaic peak power, the annual renewable electricity production increases by 10.1%. In particular, the simple pay back ranges between 4.90 and 4.98 years and the net present value between EUR 12.4 and 13.3 M for CHP operating at full power mode, considering that thermal energy available from the cogeneration unit is sold at EUR 49.2/MWh. These outcomes demonstrate the economic feasibility of wood-biomass-based renewable energy communities, which may help to enlarge the contribution of renewable technologies other than photovoltaic.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available