4.7 Article

Effect of wastewater treatment plant discharge on the bacterial community in a receiving river

Journal

ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY
Volume 239, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ecoenv.2022.113641

Keywords

Edited by Professor Bing Yan; Wastewater treatment plant; Secondary effluent; River; 16S rRNA sequencing

Funding

  1. Nanjing University
  2. Sinohydro Bureau 11 Co., Ltd

Ask authors/readers for more resources

The effluent of wastewater treatment plants can significantly alter the bacterial composition in rivers, especially in sediment. The bacterial species composition of the effluent discharge point differs significantly from upstream sites, while the impact in the water column is relatively small.
The effluent of wastewater treatment plants (WWTPs) is an important water resource for some rivers in regions with relatively low precipitation, which may pose ecological risks. Various pollutants and microorganisms are discharged into rivers, along with the WWTP effluent, but this process has not been thoroughly studied. The objective of this study was to evaluate the effect of WWTP effluent on the bacterial community in the sediment and water column of an urban river and to identify the relationship between the total and active bacterial communities. Five sites were sampled in the river, including the most upstream site of the river (Up-most), 200 m upstream of the WWTP (Up-200), at the point of effluent discharge of the WWTP (Eff-pl) and 50 m (Down-50) and 1000 m (Down-1000) downstream of the WWTP. Compared with the two upstream sites (Up-most and Up200), the bacterial species composition of Eff-pl was significantly different (p < 0.05) in both the sediment and water columns, while the bacterial species composition at Down-1000 was significantly different (p < 0.05) in the sediment but not in the water. The relative abundance of Proteobacteria, Actinobacteriota and Verrucomicrobiota was significantly different (p < 0.05) at Eff-pl in both the sediment and water columns compared with that at the upstream sites. The shared bacterial species between the DNA and RNA 16 S rRNA analyses were only 45.5-62.2% and 43.2-52.3% for the sediment and water, respectively. Accordingly, WWTP effluent drainage significantly alters (p < 0.05) the bacterial composition in the receiving river but can be recovered in water within a short distance. However, in sediment, a longer recovery space is probably needed. Analyses of the combination of total and active bacterial compositions are recommended to evaluate the ecological consequences of WWTP effluent drainage on the bacterial composition.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available