4.7 Article

Distribution of phenanthrene in the ospho2 reveals the involvement of phosphate on phenanthrene translocation and accumulation in rice

Journal

ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY
Volume 240, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ecoenv.2022.113685

Keywords

Polycyclic aromatic hydrocarbons (PAHs); Nutrient; Phosphate (Pi); ospho2; Rice (Oryza sativa)

Funding

  1. National Natural Science Foundation of China [41977123]
  2. National Key Research and Development Program of China [2019YFD0900702]

Ask authors/readers for more resources

This study demonstrates the role of OsPHO2 in regulating the translocation and accumulation of phenanthrene (Phe) in rice and the involvement of Pi in this process.
The intricate mechanisms involved in the acquisition and translocation of polycyclic aromatic hydrocarbons (PAHs) in plants have not been elucidated. Phosphate (Pi) is the bioavailable form of essential macronutrient phosphorus, which is acquired and subsequently assimilated for plant optimal growth and development. Rice phosphate overaccumulator 2 (OsPHO2) is a central constituent of the regulation of Pi homeostasis in rice. In the present study, the role of OsPHO2 in regulating the translocation and accumulation of phenanthrene (Phe) and the involvement of Pi in this process were investigated. The temporal study (1 d-35 d) revealed a significant and gradual increase of Phe accumulation in Pi-deprived roots of wild-type (WT) seedlings. Compared with the WT, the concentrations of Phe were significantly higher in the shoots of ospho2 (OsPHO2 mutant) grown hydroponically with Phe (1.5 mg/L) under +Pi (200 mu M) and -Pi (10 mu M) conditions. The sap experiment clearly showed the significant increases in levels of Phe in the xylem sap of ospho2 than the WT grown hydroponically with Phe and +Pi. Further, the concentrations of both Phe and P were coordinately higher in the culms and flag leaves of the mutants than WT at maturity in potting soil with LPhe (6 mg/kg) and HPhe (60 mg/kg). However, the concentrations of Phe in the seeds were comparable in the WT and mutants, suggesting a pivotal of OsPHO2 in attenuating Phe toxicity in the seed. In +Phe WT, the relative expression level of OsPHO2 in the shoots was significantly lower, while those of Pi transporters (PTs) OsPT4 and OsPT8 were significantly higher in the roots compared with -Phe. Together, the results provided evidence towards the involvement of Pi in OsPHO2-regulated translocation and accumulation of Phe in rice.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available