4.7 Article

Alfalfa?s response to atrazine stress and its secreted atrazine metabolites

Journal

ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY
Volume 241, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ecoenv.2022.113780

Keywords

Atrazine; Alfalfa; Cysteine; Reactive molecular species; Secreted atrazine metabolites

Funding

  1. National Natural Science Foundation of China [21906042]
  2. Henan Scientific and Technological Research Project [222102110222, 212102311063]

Ask authors/readers for more resources

The study showed that alfalfa has a certain tolerance to ATZ and is capable of accumulating the compound. Analysis using metabolomic and transcriptomic techniques revealed significant changes in specific genes and metabolites of alfalfa under ATZ stress, providing potential pathways for using alfalfa as an engineering plant to remediate ATZ-contaminated soil.
Although listed as endocrine disruptor compounds, atrazine (ATZ) is still used in large quantities in agricultural production. Here, alfalfa seedling was cultivated in hydroponic media to investigate the toxic effects of ATZ on alfalfa and accumulation of ATZ in tissues of different plant parts. Alfalfa had a strong upward translocation ability to ATZ. The stress response of alfalfa under ATZ stress was studied using metabolomic and transcriptomic techniques. S-adenosylmethionine, glutathione, 3-mercaptopyruvic acid, ornithine, and aminopropylcadaverine were significantly increased by ATZ in pathways mtr00270 and mtr00480. Several genes of cysteine synthase and spermidine synthase were significantly up-regulated by ATZ induction. They may be markers and genes with potential physiological functions of alfalfa in response to ATZ stress. In addition, using high resolution mass spectrometry, a total of five ATZ metabolites secreted from alfalfa roots were detected. Among them, acetylated deisopropylated ATZ was discovered for the first time. Hydroxylated ATZ and acetylated deethylated ATZ were more readily excreted by the root system. This study not only provides potential genes for the construction of engineering plants to remediate ATZ-contaminated soil, but also provides monitoring objects for the ecological research of ATZ metabolites.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available