4.7 Article

Prenatal di-(2-ethylhexyl) phthalate exposure induced myocardial cytotoxicity via the regulation of the NRG1-dependent ErbB2/ErbB4-PI3K/AKT signaling pathway in fetal mice

Journal

ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY
Volume 241, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ecoenv.2022.113771

Keywords

DEHP; Endocrine disruptors; NRG1; Myocardial cytotoxicity

Funding

  1. National Natural Science Foundation of China [81573234, 81773445]
  2. key Project of Jiangsu Commission of Health [ZDA2020004]

Ask authors/readers for more resources

Maternal environmental sanitation during pregnancy plays a crucial role in fetal development. Exposure to DEHP is associated with potential risks to fetal heart development. The study investigated the molecular mechanisms of DEHP-induced cardiotoxicity in fetal mice.
Environmental sanitation of maternal contact during pregnancy is extremely important for the development of different fetal tissues and organs. In particular, during early pregnancy, any adverse exposure may cause abnormal fetal growth or inhibit the development of embryogenic organs. The potential risks of phthalate exposure, which affects the development of humans and animals, are becoming a serious concern worldwide. However, the specific molecular mechanism of di-(2-ethylhexyl) phthalate (DEHP)-induced cardiotoxicity in fetal mice remains unclear. In this study, animal models of DEHP gavage at concentrations of 250, 500, and 1000 mg/kg/day within 8.5-18.5 days of pregnancy were established. The cell proliferation, survival, and apoptosis rates were evaluated using CCK8, EdU, TUNEL and flow cytometry. The molecular mechanism was assessed via transcriptome sequencing, immunohistochemistry, immunofluorescence, reverse transcription-quantitative polymerase chain reaction, and Western blot analysis. In vivo, DEHP increased apoptosis, decreased Ki67 and CD31 expression, reduced heart weight and area, slowed down myocardial sarcomere development, and caused cardiac septal defect in fetal mice heart. Transcriptome sequencing showed that DEHP decreased NRG1 expression and downregulated the ErbB2/ErbB4-PI3K/AKT signaling pathway-related target genes. In vitro, primary cardiomyocytes were cultured with DEHP at a concentration of 150 mu g/mL combined with ErbB inhibitor (AG1478, 10 mu mol/L) and/or NRG1 protein (100 ng/mL) for 72 h. After DEHP intervention, the expression of NRG1 and the phosphorylation level of ErbB2, ErbB4, PI3K, and AKT decreased, and the apoptosis-related protein levels increased. Moreover, the apoptosis rate increased. After adding exogenous NRG1, the phosphorylation level of the NRG1/ERbB2/ERbB4-PI3K/AKT pathway increased, and the apoptosis-related protein levels decreased. Further, the apoptosis rate reduced. Interestingly, after exposure to DEHP and AG1478 + NRG1, the antiapoptotic effect of NRG1 and cardiomyocyte proliferation decreased by inhibiting the NRG1/ERbB2/ERbB4PI3K/AKT pathway. Hence, the NRG1-dependent regulation of the ERbB2/ERbB4-PI3K/AKT signaling pathway may be a key mechanism of DEHP-induced myocardial cytotoxicity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available