4.7 Article

Automated detection of ADHD: Current trends and future perspective

Journal

COMPUTERS IN BIOLOGY AND MEDICINE
Volume 146, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compbiomed.2022.105525

Keywords

Attention deficit hyperactivity disorder; (ADHD); Deep learning; Machine learning; PRISMA; MRI; EEG; ECG; HRV; Questionnaires; CPT; RST; Accelerometer; Actigraphy; Pupillometric; Genetic; Social media; Artificial intelligence

Ask authors/readers for more resources

ADHD is a complex disorder affecting brain neurodevelopment with challenging diagnosis often delayed. Artificial intelligence may play a crucial role in improving early diagnosis efficiency. Research has identified machine learning and deep learning tools for ADHD diagnosis, yet gaps exist in data availability and limited use of wearable device data.
Attention deficit hyperactivity disorder (ADHD) is a heterogenous disorder that has a detrimental impact on the neurodevelopment of the brain. ADHD patients exhibit combinations of inattention, impulsiveness, and hyperactivity. With early treatment and diagnosis, there is potential to modify neuronal connections and improve symptoms. However, the heterogeneous nature of ADHD, combined with its comorbidities and a global shortage of diagnostic clinicians, means diagnosis of ADHD is often delayed. Hence, it is important to consider other pathways to improve the efficiency of early diagnosis, including the role of artificial intelligence. In this study, we reviewed the current literature on machine learning and deep learning studies on ADHD diagnosis and identified the various diagnostic tools used. Subsequently, we categorized these studies according to their diagnostic tool as brain magnetic resonance imaging (MRI), physiological signals, questionnaires, game simulator and performance test, and motion data. We identified research gaps include the paucity of publicly available database for all modalities in ADHD assessment other than MRI, as well as a lack of focus on using data from wearable devices for ADHD diagnosis, such as ECG, PPG, and motion data. We hope that this review will inspire future work to create more publicly available datasets and conduct research for other modes of ADHD diagnosis and monitoring. Ultimately, we hope that artificial intelligence can be extended to multiple ADHD diagnostic tools, allowing for the development of a powerful clinical decision support pathway that can be used both in and out of the hospital.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available