4.5 Article

Thermo-TRP channels are involved in BAT thermoregulation in cold-acclimated Brandt?s voles

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.cbpb.2022.110794

Keywords

Thermo-TRPs; Brown adipose tissue; Thermoregulation; Cold acclimation; Brandt's vole(Lasiopodomysbrandtii)

Ask authors/readers for more resources

This study explores the involvement of thermosensitive TRP channels in thermoregulation in small mammals. The results suggest that TRP channels may participate in BAT thermoregulation through CaMKII, AMPK, SIRT1, and UCP1 pathway in cold-acclimated Brandt's voles. The study highlights the potential role of TRP channels in the regulation of body temperature.
Transient receptor potential (TRP) channels, which can sense temperature, pressure and mechanical stimuli, were involved in many physiological and biochemical reactions. Whether thermosensitive TRP channels (Thermo-TRPs) are involved in thermoregulation in small mammals is still not clear. We measured the changes of thermo-TRPs at 4 ?, 23 ? and 30 ? in Brandt's voles (Lasiopodomys brandtii) to test the hypothesis that Thermo-TRPs are involved in cold-induced thermogenesis of brown adipose tissue (BAT) in small mammals. Results showed that air temperatures had no effect on body mass and rectal temperature, but the food intake and basal metabolic rate (BMR) in the 4 ? group were significantly higher than in the 30 ? group. Compared with 30 ? group, the protein contents of uncoupling protein 1(UCP1), TRP vanilloid 2 (TRPV2), TRP ankyrin 1 (TRPA1), TRP melastatin 2 (TRPM2), silent Information Regulator T1 (SIRT1), AMP-activated protein kinase (AMPK) and Calcium/calmodulin-dependent protein kinase II (CaMKII) in BAT increased significantly in 4 & DEG;C group, but there was no significant difference in the protein content of Thermo-TRPs in the hypothalamus among groups. Further, the expression of PRDM16 (PR domain containing 16) in inguinal white adipose tissue (iWAT) at 4 ? was significantly higher than that at 30 ?, but no difference was observed in the expression of other browning-related genes or TRPV2. In conclusion, TRP channels may participate in BAT thermoregulation through the CaMKII, AMPK, SIRT1 and UCP1 pathway in cold-acclimated Brandt's voles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available