4.7 Article

Measurement and scaling of turbulent burning velocity of ammonia/methane/air propagating spherical flames at elevated pressure

Journal

COMBUSTION AND FLAME
Volume 242, Issue -, Pages -

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.combustflame.2022.112183

Keywords

Turbulent burning velocity; Turbulent burning velocity correlation; Integral length scale effect; Propagating spherical flame; Ammonia

Funding

  1. National Natural Science Foundation of China [52076171, 52106183]
  2. China Postdoctoral Science Foundation [2021M692536]
  3. China Scholarship Council

Ask authors/readers for more resources

This study presents the accurate laminar burning velocity, turbulent burning velocity, and their correlations for ammonia/methane/air propagating spherical flames. The results indicate that the turbulent burning velocity decreases with the ammonia content, while the normalized turbulent burning velocity increases. It is also found that the turbulent burning velocity of ammonia flame can be expressed using the correlation of Karlovitz and Damkohler numbers.
This study reports the accurate laminar burning velocity, turbulent burning velocity and its correlations of ammonia/methane/air propagating spherical flames. The experiments were carried out on a mediumscale, fan-stirred cylindrical combustion chamber with ammonia molar content varying from 20% to 60% and the initial pressure up to 3 bar. The turbulent burning velocity decreases with the ammonia content due to the weakening effect of the laminar burning velocity under all turbulence intensities and pressures studied. Since the weakening of flame chemistry is dominated by the enhancement of turbulence eddies, the normalized turbulent burning velocity increases with the ammonia content. The turbulent expanding flame of ammonia/methane/air is self-similar under different ammonia content. This self-similar propagation follows the one-half power-law correlation between the normalized turbulent burning velocity, S-T /S-L, and the turbulent flame Reynolds number, which is quantitatively consistent with that of unity Lewis number methane/air flames (Chaudhuri 2012). The pressure dependence of turbulent burning velocity can be represented roughly as a 0.4 power law of S-T/S-L and (u'/S-L)(P/P-0). However, there is a quantitative gap between the pre-exponential factor of the present experimental data and the literature data based on this correlation, which could attribute to the difference in the turbulence eddy scales of different experimental apparatus. The integral length scale characterized the largest turbulence eddies is introduced to consider the turbulent length scale effect. A modified general correlation S-T/S-L similar to (L-I/L-0)(0.5)[(u'/S-L)(P/P-0)](0.41) with the consideration of the integral length scale effect is obtained, which is able to predict a variety of spherical flame data regardless of temperatures, pressures, and fuel types. In addition, it is verified that turbulent burning velocity of ammonia flame could be expressed by the correlation of Karlovitz and Damkohler numbers: S-T/S-L similar to Ka . Da = Re-T, flow(0.5). It can be seen that ammonia has similar turbulent combustion characteristics as hydrocarbon fuel. These findings indicate that it is feasible to simulate and optimize ammonia combustors utilizing previous turbulent burning velocity correlations based on hydrocarbon fuel. (C) 2022 The Combustion Institute. Published by Elsevier Inc. All rightsr eserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available