4.7 Article

Peptide-functionalised magnetic silk nanoparticles produced by a swirl mixer for enhanced anticancer activity of ASC-J9

Journal

COLLOIDS AND SURFACES B-BIOINTERFACES
Volume 216, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.colsurfb.2022.112549

Keywords

Targeted drug delivery; Magnetic silk nanoparticles; Microfluidics; Peptide-functionalized nanoparticles; Cancer therapy

Funding

  1. EPSRC, UK [EP/N007174/1, EP/N023579/1]
  2. University of Sheffield, UK

Ask authors/readers for more resources

This study developed a new method for producing peptide-functionalized magnetic silk nanoparticles for targeted delivery to cancer cells. The functionalized nanoparticles showed higher selectivity towards cancer cells, increased cellular uptake and improved anticancer activity of the drug ASC-J9.
Silk fibroin is an FDA approved biopolymer for clinical applications with great potential in nanomedicine. However, silk-based nanoformulations are still facing several challenges in processing and drug delivery efficiency (such as reproducibility and targetability), especially in cancer therapy. To address these challenges, robust and controllable production methods are required for generating nanocarriers with desired properties. This study aimed to develop a novel method for the production of peptide-functionalized magnetic silk nano particles with higher selectivity for cancer cells for targeted delivery of the hydrophobic anticancer agent ASCJ9. A new microfluidic device with a swirl mixer was designed to fabricate magnetic silk nanoparticles (MSNP) with desired size and narrow size distribution. The surface of MSNPs was functionalized with a cationic amphiphilic anticancer peptide, G(IIKK)3I-NH2 (G3), to enhance their selectivity towards cancer cells. The G3MSNPs increased the cellular uptake and anticancer activity of G3 in HCT 116 colorectal cancer cells compared to free G3. Moreover, the G3-MSNPs exhibited considerably higher cellular uptake and cytotoxicity in HCT 116 colorectal cancer cells compared to normal cells (HDFs). Encapsulating ASC-J9 in G3-MSNPs resulted in augmented anticancer activity compared to free ASC-J9 and non-functionalized ASC-J9 loaded MSNPs within its biological half-life. Hence, functionalizing MSNPs with G3 enabled targeted delivery of ASC-J9 to cancer cells and enhanced its anticancer effect. Functionalization of nanoparticles with anticancer peptides could be regarded as a new strategy for targeted delivery and enhanced efficiency of anticancer drugs. Furthermore, the micro fluidic device introduced in this paper offers a robust and reproducible method for fabrication of small sized homogenous nanoparticles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available