4.5 Article

Primate brain pattern-based automated Alzheimer's disease detection model using EEG signals

Journal

COGNITIVE NEURODYNAMICS
Volume 17, Issue 3, Pages 647-659

Publisher

SPRINGER
DOI: 10.1007/s11571-022-09859-2

Keywords

Primate brain modelling; Feature engineering; EEG signal classification; Feature extraction; AD detection

Categories

Ask authors/readers for more resources

An automated Alzheimer's disease (AD) detection model using EEG signals and a novel directed graph for feature extraction achieved high accuracy in classifying AD patients and healthy controls, paving the way for further development of brain connectome-inspired models.
Electroencephalography (EEG) may detect early changes in Alzheimer's disease (AD), a debilitating progressive neurodegenerative disease. We have developed an automated AD detection model using a novel directed graph for local texture feature extraction with EEG signals. The proposed graph was created from a topological map of the macroscopic connectome, i.e., neuronal pathways linking anatomo-functional brain segments involved in visual object recognition and motor response in the primate brain. This primate brain pattern (PBP)-based model was tested on a public AD EEG signal dataset. The dataset comprised 16-channel EEG signal recordings of 12 AD patients and 11 healthy controls. While PBP could generate 448 low-level features per one-dimensional EEG signal, combining it with tunable q-factor wavelet transform created a multilevel feature extractor (which mimicked deep models) to generate 8,512 (= 448 x 19) features per signal input. Iterative neighborhood component analysis was used to choose the most discriminative features (the number of optimal features varied among the individual EEG channels) to feed to a weighted k-nearest neighbor (KNN) classifier for binary classification into AD vs. healthy using both leave-one subject-out (LOSO) and tenfold cross-validations. Iterative majority voting was used to compute subject-level general performance results from the individual channel classification outputs. Channel-wise, as well as subject-level general results demonstrated exemplary performance. In addition, the model attained 100% and 92.01% accuracy for AD vs. healthy classification using the KNN classifier with tenfold and LOSO cross-validations, respectively. Our developed multilevel PBP-based model extracted discriminative features from EEG signals and paved the way for further development of models inspired by the brain connectome.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available