4.8 Review

Light-Matter Interactions in Hybrid Material Metasurfaces

Journal

CHEMICAL REVIEWS
Volume -, Issue -, Pages -

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemrev.2c00011

Keywords

-

Funding

  1. Vannevar Bush Faculty Fellowship from the U.S. Department of Defense (DOD) [N00014-17-1-3023]
  2. Office of Naval Research [ONRN00014-21-1-2289]
  3. National Science Foundation [DMR-1904385, 27464]
  4. Cottrell Fellowship from the Research Corporation for Science Advancement [CHE-2039044]

Ask authors/readers for more resources

This review discusses the integration of plasmonic and dielectric metasurfaces with emissive or stimuli-responsive materials, enabling control of light-matter interactions at the nanoscale. Metasurfaces offer the ability to manipulate electromagnetic waves at the subwavelength level, while the combination with nanoscale emitters allows for enhanced photoluminescence, nanoscale lasing, controlled quantum emission, and formation of exciton-polaritons. Additionally, the use of functional materials that respond to external stimuli enables the engineering of tunable nanophotonic devices. Emerging metasurface designs, such as surface-functionalized, chemically tunable, and multilayer hybrid metasurfaces, hold promise for various applications including photocatalysis, sensing, displays, and quantum information.
This Review focuses on the integration of plasmonic and dielectric metasurfaces with emissive or stimuli-responsive materials for manipulating light-matter interactions at the nanoscale. Metasurfaces, engineered planar structures with rationally designed building blocks, can change the local phase and intensity of electromagnetic waves at the subwavelength unit level and offers more degrees of freedom to control the flow of light. A combination of metasurfaces and nanoscale emitters facilitates access to weak and strong coupling regimes for enhanced photoluminescence, nanoscale lasing, controlled quantum emission, and formation of exciton-polaritons. In addition to emissive materials, functional materials that respond to external stimuli can be combined with metasurfaces to engineer tunable nanophotonic devices. Emerging metasurface designs including surface-functionalized, chemically tunable, and multilayer hybrid metasurfaces open prospects for diverse applications, including photocatalysis, sensing, displays, and quantum information.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available