4.7 Article

Unsaturated Ni/V centers and short Ni center dot V/Ni distances in nickel vanadate for high-performance zinc-ion battery

Related references

Note: Only part of the references are listed.
Review Electrochemistry

Zn electrode/electrolyte interfaces of Zn batteries: A mini review

Longtao Ma et al.

Summary: This article discusses the advantages and challenges of zinc metal batteries, as well as the critical role of regulating zinc deposition and improving cyclic lifespan. Strategies for enhancing the stability of zinc metal anodes are proposed, along with an analysis of characterization techniques for zinc metal anodes. Finally, the outlook for developing zinc batteries is presented.

ELECTROCHEMISTRY COMMUNICATIONS (2021)

Article Chemistry, Physical

Uncover the mystery of high-performance aqueous zinc-ion batteries constructed by oxygen-doped vanadium nitride cathode: Cationic conversion reaction works

Duo Chen et al.

Summary: This study demonstrates for the first time a new energy storage mechanism involving cationic conversion reactions in the vanadium oxide-based ZIB system. Experimental and theoretical calculations confirm the reversible characteristics of these reactions, opening up a new direction for high-capacity ZIBs.

ENERGY STORAGE MATERIALS (2021)

Article Chemistry, Physical

Boosting zinc-ion intercalation in hydrated MoS2 nanosheets toward substantially improved performance

Huanyan Liu et al.

Summary: The study unveiled the crucial role of crystal water in enhancing the Zn2+ intercalation kinetics of layered MoS2 host, accelerating the charge-transfer transportation and Zn2+ diffusivity by serving as structural pillars and improving surface hydrophilicity, enabling efficacious Zn2+ insertion/extraction.

ENERGY STORAGE MATERIALS (2021)

Article Nanoscience & Nanotechnology

Enhanced Reversible Zinc Ion Intercalation in Deficient Ammonium Vanadate for High-Performance Aqueous Zinc-Ion Battery

Quan Zong et al.

Summary: This study utilized heat treatment to remove partial NH4+ ions, directly grew NH4V4O10 nanosheets on carbon cloth, and prepared deficient NH4V4O10 (NVO) material with enlarged interlayer spacing, facilitating fast zinc ion transport and high storage capacity, ensuring high electrochemical reaction reversibility and structural stability.

NANO-MICRO LETTERS (2021)

Article Chemistry, Physical

Cation- deficient Zn0.3(NH4)0.3V4O10•0.91H2O for rechargeable aqueous zinc battery with superior low- temperature performance

Tao He et al.

Summary: A novel cation-deficient nonstoichiometric Zn-0.3(NH4)(0.3)V4O10·0.91H2O (ZNV) cathode material for aqueous zinc batteries (AZBs) was reported in this research, exhibiting high discharge capacity and superior cycle stability. Both experiments and theoretical simulations demonstrated that the presence of cation vacancies facilitates Zn2+ diffusion during cycles.

ENERGY STORAGE MATERIALS (2021)

Article Materials Science, Multidisciplinary

Rechargeable aqueous zinc-ion batteries: Mechanism, design strategies and future perspectives

Huanyan Liu et al.

Summary: Rechargeable aqueous zinc-ion batteries (ZIBs) are considered a promising energy storage solution for grid-scale applications due to their safety, eco-friendliness, and cost-effectiveness. Despite significant progress in developing efficient cathodes, anodes, and electrolytes, the understanding of ZIBs and their energy storage mechanisms is still in its early stages and requires further investigation for practical implementation. This review provides a comprehensive summary of the development of ZIBs, design strategies, challenges, and opportunities for practical viability.

MATERIALS TODAY (2021)

Article Chemistry, Physical

Multi-Scale Investigations of δ-Ni0.25V2O5•nH2O Cathode Materials in Aqueous Zinc-Ion Batteries

Jianwei Li et al.

ADVANCED ENERGY MATERIALS (2020)

Article Chemistry, Multidisciplinary

A High Performing Zn-Ion Battery Cathode Enabled by In Situ Transformation of V2O5Atomic Layers

Yanying Lu et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2020)

Article Chemistry, Physical

Hydrated Intercalation for High-Performance Aqueous Zinc Ion Batteries

Jaeho Shin et al.

ADVANCED ENERGY MATERIALS (2019)

Article Nanoscience & Nanotechnology

Boosting the Cyclic Stability of Aqueous Zinc-Ion Battery Based on Al-Doped V10O24•12H2O Cathode Materials

Qian Li et al.

ACS APPLIED MATERIALS & INTERFACES (2019)

Article Chemistry, Multidisciplinary

Achieving Both High Voltage and High Capacity in Aqueous Zinc-Ion Battery for Record High Energy Density

Longtao Ma et al.

ADVANCED FUNCTIONAL MATERIALS (2019)

Article Multidisciplinary Sciences

Ultralong cycle stability of aqueous zinc-ion batteries with zinc vanadium oxide cathodes

Lulu Wang et al.

SCIENCE ADVANCES (2019)

Article Electrochemistry

Structural Modification of V2O5 as High-Performance Aqueous Zinc-Ion Battery Cathode

Boya Tang et al.

JOURNAL OF THE ELECTROCHEMICAL SOCIETY (2019)

Article Chemistry, Multidisciplinary

Expanded hydrated vanadate for high-performance aqueous zinc-ion batteries

Chaofeng Liu et al.

ENERGY & ENVIRONMENTAL SCIENCE (2019)

Article Chemistry, Physical

Zinc ion stabilized MnO2 nanospheres for high capacity and long lifespan aqueous zinc-ion batteries

Jinjin Wang et al.

JOURNAL OF MATERIALS CHEMISTRY A (2019)

Article Chemistry, Multidisciplinary

A new rechargeable battery based on a zinc anode and a NaV6O15 nanorod cathode

Saiful Islam et al.

CHEMICAL COMMUNICATIONS (2019)

Article Chemistry, Multidisciplinary

Highly Stable Aqueous Zinc-Ion Storage Using a Layered Calcium Vanadium Oxide Bronze Cathode

Chuan Xia et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2018)

Article Chemistry, Multidisciplinary

Aqueous vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface

Dipan Kundu et al.

ENERGY & ENVIRONMENTAL SCIENCE (2018)

Article Multidisciplinary Sciences

High-capacity aqueous zinc batteries using sustainable quinone electrodes

Qing Zhao et al.

SCIENCE ADVANCES (2018)

Review Chemistry, Physical

Present and Future Perspective on Electrode Materials for Rechargeable Zinc-Ion Batteries

Aishuak Konarov et al.

ACS ENERGY LETTERS (2018)

Article Chemistry, Physical

Layered MgxV2O5•nH2O as Cathode Material for High-Performance Aqueous Zinc Ion Batteries

Fangwang Ming et al.

ACS ENERGY LETTERS (2018)

Article Chemistry, Physical

Rechargeability of aqueous sulfate Zn/MnO2 batteries enhanced by accessible Mn2+ ions

Mylad Chamoun et al.

ENERGY STORAGE MATERIALS (2018)

Article Multidisciplinary Sciences

Regenerable Cu-intercalated MnO2 layered cathode for highly cyclable energy dense batteries

Gautam G. Yadav et al.

NATURE COMMUNICATIONS (2017)

Article Multidisciplinary Sciences

Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities

Ning Zhang et al.

NATURE COMMUNICATIONS (2017)

Article Nanoscience & Nanotechnology

Zn/V2O5 Aqueous Hybrid-Ion Battery with High Voltage Platform and Long Cycle Life

Ping Hu et al.

ACS APPLIED MATERIALS & INTERFACES (2017)

Article Chemistry, Multidisciplinary

Investigation of zinc ion storage of transition metal oxides, sulfides, and borides in zinc ion battery systems

Wenbao Liu et al.

CHEMICAL COMMUNICATIONS (2017)

Article Nanoscience & Nanotechnology

A Prussian Blue/Zinc Secondary Battery with a Bio-Ionic Liquid-Water Mixture as Electrolyte

Zhen Liu et al.

ACS APPLIED MATERIALS & INTERFACES (2016)

Article Chemistry, Physical

A High Power Rechargeable Nonaqueous Multivalent Zn/V2O5 Battery

Premkumar Senguttuvan et al.

ADVANCED ENERGY MATERIALS (2016)

Article Chemistry, Multidisciplinary

Elucidating the intercalation mechanism of zinc ions into alpha-MnO2 for rechargeable zinc batteries

Boeun Lee et al.

CHEMICAL COMMUNICATIONS (2015)

Article Chemistry, Multidisciplinary

An Aqueous Zinc-Ion Battery Based on Copper Hexacyanoferrate

Rafael Trocoli et al.

CHEMSUSCHEM (2015)

Review Multidisciplinary Sciences

Electrical Energy Storage for the Grid: A Battery of Choices

Bruce Dunn et al.

SCIENCE (2011)

Article Chemistry, Physical

A climbing image nudged elastic band method for finding saddle points and minimum energy paths

G Henkelman et al.

JOURNAL OF CHEMICAL PHYSICS (2000)