4.7 Article

Tailoring electromagnetic responses of delaminated Mo2TiC2Tx MXene through the decoration of Ni particles of different morphologies

Related references

Note: Only part of the references are listed.
Review Chemistry, Physical

Two-dimensional nanomaterials for high-efficiency electromagnetic wave absorption: An overview of recent advances and prospects

Shijie Zhang et al.

Summary: This review summarizes the latest progress in 2D nanomaterials for electromagnetic wave absorption, including synthesis methods, structures, absorption mechanisms, and performances of various materials. The aim is to provide readers with a systematic overview of the relationship between 2D structures and absorption properties, and guide the future design of novel high-performance electromagnetic wave absorption materials.

JOURNAL OF ALLOYS AND COMPOUNDS (2022)

Article Engineering, Environmental

Ultralight Ti3C2Tx MXene foam with superior microwave absorption performance

Kexuan Hu et al.

Summary: The ultralight Ti3C2Tx foams fabricated by a new method show enhanced microwave absorption (MA) performance when the pre-freezing temperature is decreased, resulting in smaller pore size, more uniform pore structure, decreased electrical conductivity, and enhanced MA performance. Pre-frozen at -196 degrees C, the Ti3C2Tx foams exhibit the most impressive MA performance with minimum reflection loss and effective absorption bandwidth, making them one of the most lightweight materials with excellent MA performance.

CHEMICAL ENGINEERING JOURNAL (2021)

Article Materials Science, Ceramics

Multi-phase heterostructures of flower-like Ni(NiO) decorated on two-dimensional Ti3C2Tx/TiO2 for high-performance microwave absorption properties

Yang Gao et al.

Summary: By decorating three-dimensional flower-like Ni(NiO) on two-dimensional Ti3C2Tx/TiO2 composites, the Ni(NiO)/Ti3C2Tx/TiO2 composites can achieve effective absorption over a wide bandwidth with a relatively thin thickness, attributed to the dielectric loss of Ti3C2Tx MXenes, multi-phase heterostructures of Ni(NiO), and their synergistic loss mechanism.

CERAMICS INTERNATIONAL (2021)

Article Engineering, Environmental

Template-free self-assembly of MXene and CoNi-bimetal MOF into intertwined one-dimensional heterostructure and its microwave absorbing properties

Fei Wu et al.

Summary: The intertwined one-dimensional (1D) heterostructure constructed from MXene and metal-organic frameworks (MOFs) allows for effective control of carbon nanotubes (CNTs) growth, thereby regulating electromagnetic parameters. The resulting 3D cross-linked network features extensive heterogeneous interfaces, hierarchical pore structure, and desirable conductivity, exhibiting superior microwave absorbing properties.

CHEMICAL ENGINEERING JOURNAL (2021)

Article Nanoscience & Nanotechnology

Hierarchical Magnetic Network Constructed by CoFe Nanoparticles Suspended Within Tubes on Rods Matrix Toward Enhanced Microwave Absorption

Chunyang Xu et al.

Summary: Hierarchical Mo2N@CoFe@C/CNT composites with abundant magnetic CoFe nanoparticles exhibit strong microwave absorption capabilities, with a remarkable value of -53.5 dB. The unique hierarchical core-shell structure, along with the dispersed magnetic coupling network, contribute to the superior performance in microwave absorption applications.

NANO-MICRO LETTERS (2021)

Article Chemistry, Physical

Improved synergistic effect for achieving ultrathin microwave absorber of 1D Co nanochains/2D carbide MXene nanocomposite

Fei Pan et al.

Summary: A multilayer-sandwiched Ti3C2Tx MXene heterostructure decorated with one-dimensional Co nanochains was successfully synthesized through a facile in situ process, realizing electromagnetic wave absorbers with ultrathin matching thickness and excellent absorbing capability. The MXene/Co nanochains composites achieved a minimum reflection loss of -46.48 dB with an ultrathin matching thickness of only 1.02 mm at 16.75 GHz, with the absorption mechanism involving conductive loss, polarization loss, magnetic loss, and interlacing magnetic flux field effect.

CARBON (2021)

Article Nanoscience & Nanotechnology

Three-Dimensional Ordered Mesoporous Carbon Spheres Modified with Ultrafine Zinc Oxide Nanoparticles for Enhanced Microwave Absorption Properties

Yan Song et al.

Summary: This study successfully prepared ultrafine zinc oxide nanoparticles supported on three-dimensional ordered mesoporous carbon spheres, showing excellent microwave absorption performance.

NANO-MICRO LETTERS (2021)

Article Chemistry, Multidisciplinary

Multifunctional Magnetic Ti3C2Tx MXene/Graphene Aerogel with Superior Electromagnetic Wave Absorption Performance

Luyang Liang et al.

Summary: The study successfully developed a three-dimensional dielectric/magnetic aerogel with superior absorption performance, broad absorption bandwidth, and excellent electromagnetic wave absorbing capabilities, demonstrating potential for stable and durable electromagnetic applications.

ACS NANO (2021)

Review Materials Science, Ceramics

From structural ceramics to 2D materials with multi-applications: A review on the development from MAX phases to MXenes

Aiguo Zhou et al.

Summary: MAX phases and MXenes are key focuses of research, with MAX phases known for their unique microstructure and properties, particularly their crack healing abilities; MXene research centers around preparation processes, microstructure, composites, and applications, with a primary focus on energy storage and electromagnetic interference shielding. New research directions and future trends on MAX phases and MXenes are also discussed.

JOURNAL OF ADVANCED CERAMICS (2021)

Article Chemistry, Physical

3D cross-linked graphene or/and MXene based nanomaterials for electromagnetic wave absorbing and shielding

Yanhong Lu et al.

Summary: With the increasing electromagnetic pollution, there is a strong demand for advanced electromagnetic wave shielding and absorbing materials that are multifunctional with ultra-lightweight, wide bandwidth, highly flexible, and robust. 2D nanomaterials like graphene and MXene have shown great potential for these applications, while 3D cross-linked graphene or/and MXene based materials have demonstrated excellent EMI shielding and MA performance.

CARBON (2021)

Article Chemistry, Physical

Electrostatic self-assembly construction of 2D MoS2 wrapped hollow Fe3O4 nanoflowers@1D carbon tube hybrids for self-cleaning highperformance microwave absorbers

Xiang Zhang et al.

Summary: Recent research has shown an urgent need for high-performance microwave absorbers to tackle electromagnetic pollution. By constructing heterostructure materials through stacking low dimensional materials, superior microwave absorption performance can be achieved.

CARBON (2021)

Article Chemistry, Physical

Ultralight, compressible, and anisotropic MXene@Wood nanocomposite aerogel with excellent electromagnetic wave shielding and absorbing properties at different directions

Meng Zhu et al.

Summary: This study developed an anisotropic MXene@Wood nanocomposite aerogel with EMI shielding and EM absorbing properties in different directions by modifying natural wood, assembling f-Ti3C2Tx nanosheets, and achieving ideal structural load carrying capacity at the parallel growth direction and high compressibility at the vertical growth direction simultaneously.

CARBON (2021)

Article Engineering, Environmental

Synthesis of NiCo-LDH/MXene hybrids with abundant heterojunction surfaces as a lightweight electromagnetic wave absorber

Xuran Gao et al.

Summary: By adjusting the loading of MXene, a series of NiCo-LDH/MXene hybrids with excellent electromagnetic wave absorption performance were obtained in this research. The synergistic effect of dielectric loss and magnetic loss, as well as the excellent attenuation ability and impedance matching characteristics of the material, contribute to the excellent EMW performance of the NiCo-LDH/MXene hybrids. The research demonstrated the impact of the structure and composition of EMW absorbers on their performance, and provided insights for the design and development of high-performance EMW absorption materials.

CHEMICAL ENGINEERING JOURNAL (2021)

Article Chemistry, Physical

Enhanced visualizing charge distribution of 2D/2D MXene/MoS2 heterostructure for excellent microwave absorption performance

Xiao Li et al.

Summary: This study constructs a 3D conductive interconnected network in MXene-MoS2 composites to investigate the synergistic effect of 2D/2D heterostructures in microwave absorption, demonstrating their potential in enhancing performance.

JOURNAL OF ALLOYS AND COMPOUNDS (2021)

Article Chemistry, Physical

Tailoring Microwave Electromagnetic Responses in Ti3C2Tx MXene with Fe3O4 Nanoparticle Decoration via a Solvothermal Method

Yaya Li et al.

Summary: A novel two-dimensional Ti3C2Tx/Fe3O4 nanoparticle composite was successfully prepared with excellent electromagnetic wave absorption performance, providing a strategy for designing microwave absorbers.

JOURNAL OF PHYSICAL CHEMISTRY C (2021)

Article Nanoscience & Nanotechnology

3D Seed-Germination-Like MXene with In Situ Growing CNTs/Ni Heterojunction for Enhanced Microwave Absorption via Polarization and Magnetization

Xiao Li et al.

Summary: This study addresses the issue of lacking magnetic loss capability in pure MXene by fabricating a magnetic CNTs/Ni heterostructure decorated MXene substrate. This hybrid structure shows superior microwave absorption performance due to improved impedance matching conditions. The distinctive 3D architecture of the MXene-CNTs/Ni hybrid enhances magnetic loss and polarization capabilities, showcasing novel ideas for developing magnetic MXene-based absorbers.

NANO-MICRO LETTERS (2021)

Article Materials Science, Ceramics

Enhanced electromagnetic wave absorption property of binary ZnO/NiCo2O4 composites

Bin Du et al.

Summary: Metal oxide-based electromagnetic wave absorbing materials, such as ZnO/NiCo2O4 composites, have attracted great attention in the fields of telecommunication and electronics due to their selectable mechanical properties and outstanding dielectric performance. The synthesized ZnO/NiCo2O4 nanoparticles exhibited excellent electromagnetic wave absorption properties, making them a promising candidate for future applications in this area.

JOURNAL OF ADVANCED CERAMICS (2021)

Article Materials Science, Ceramics

Novel hierarchical structure of MoS2/TiO2/Ti3C2Tx composites for dramatically enhanced electromagnetic absorbing properties

Heng Du et al.

Summary: Hierarchical MoS2/TiO2/Ti3C2Tx composites were successfully prepared by one-pot hydrothermal method, showing enhanced microwave absorbing performance. MoS2 nanosheets anchored on the surface and interlayer of Ti3C2Tx greatly improved the electromagnetic wave absorption, with wide frequency coverage and lightweight features.

JOURNAL OF ADVANCED CERAMICS (2021)

Article Chemistry, Multidisciplinary

Pillared Mo2TiC2 MXene for high-power and long-life lithium and sodium-ion batteries

Philip A. Maughan et al.

Summary: In this study, a porous Mo2TiC2 MXene with nanoengineered interlayer distances was successfully created using an amine-assisted silica pillaring method. The pillared MXene exhibited significantly enhanced cycling performance for Li-ion storage and fast-charging properties, showing superior capacity, rate capability, and cycling stability compared to the non-pillared analogue. Spectroscopic techniques were used to demonstrate the charge storage mechanism and the conversion reaction occurring in this MXene, which increases the capacity beyond intercalation. The study also investigated the sodium storage properties of pillared and non-pillared Mo2TiC2 for the first time.

NANOSCALE ADVANCES (2021)

Article Nanoscience & Nanotechnology

Enhanced Electromagnetic Wave-Absorbing Performance of Magnetic Nanoparticles-Anchored 2D Ti3C2Tx MXene

Luyang Liang et al.

ACS APPLIED MATERIALS & INTERFACES (2020)

Article Chemistry, Multidisciplinary

Beyond Ti3C2Tx: MXenes for Electromagnetic Interference Shielding

Meikang Han et al.

ACS NANO (2020)

Article Materials Science, Multidisciplinary

Enhanced microwave absorption properties of Ti3C2 MXene powders decorated with Ni particles

Yi Liu et al.

JOURNAL OF MATERIALS SCIENCE (2020)

Article Nanoscience & Nanotechnology

Anisotropic Electromagnetic Absorption of Aligned Ti3C2Tx MXene/Gelatin Nanocomposite Aerogels

Minglong Yang et al.

ACS APPLIED MATERIALS & INTERFACES (2020)

Article Materials Science, Ceramics

2D-layered Ti3C2/TiO2 hybrids derived from Ti3C2 MXenes for enhanced electromagnetic wave absorption

Bingbing Fan et al.

CERAMICS INTERNATIONAL (2020)

Article Materials Science, Ceramics

Synthesis, microstructure, and properties of high purity Mo2TiAlC2 ceramics fabricated by spark plasma sintering

Yunhui Niu et al.

JOURNAL OF ADVANCED CERAMICS (2020)

Review Engineering, Environmental

2D MXenes: Electromagnetic property for microwave absorption and electromagnetic interference shielding

Mao-Sheng Cao et al.

CHEMICAL ENGINEERING JOURNAL (2019)

Article Nanoscience & Nanotechnology

Promising Ti3C2Tx MXene/Ni Chain Hybrid with Excellent Electromagnetic Wave Absorption and Shielding Capacity

Luyang Liang et al.

ACS APPLIED MATERIALS & INTERFACES (2019)

Article Materials Science, Ceramics

Novel two-dimensional Ti3C2Tx/Ni-spheres hybrids with enhanced microwave absorption properties

Ning Li et al.

CERAMICS INTERNATIONAL (2019)

Article Materials Science, Multidisciplinary

Novel two-dimensional Ti3C2Tx MXenes/nano- carbon sphere hybrids for high-performance microwave absorption

Binzhou Dai et al.

JOURNAL OF MATERIALS CHEMISTRY C (2018)

Article Chemistry, Physical

Thermoelectric Properties of Two-Dimensional Molybdenum-Based MXenes

Hyunho Kim et al.

CHEMISTRY OF MATERIALS (2017)

Article Nanoscience & Nanotechnology

Ti3C2 MXenes with Modified Surface for High-Performance Electromagnetic Absorption and Shielding in the X-Band

Meikang Han et al.

ACS APPLIED MATERIALS & INTERFACES (2016)

Article Materials Science, Ceramics

Titanium carbide (MXene) nanosheets as promising microwave absorbers

Yuchang Qing et al.

CERAMICS INTERNATIONAL (2016)

Article Multidisciplinary Sciences

Electromagnetic interference shielding with 2D transition metal carbides (MXenes)

Faisal Shahzad et al.

SCIENCE (2016)

Article Chemistry, Multidisciplinary

Two-Dimensional, Ordered, Double Transition Metals Carbides (MXenes)

Babak Anasori et al.

ACS NANO (2015)

Article Physics, Applied

Experimental and theoretical characterization of ordered MAX phases Mo2TiAlC2 and Mo2Ti2AlC3

Babak Anasori et al.

JOURNAL OF APPLIED PHYSICS (2015)

Article Nanoscience & Nanotechnology

Shell Thickness-Dependent Microwave Absorption of Core-Shell Fe3O4@C Composites

Yunchen Du et al.

ACS APPLIED MATERIALS & INTERFACES (2014)

Article Physics, Multidisciplinary

Microwave Absorbing Materials: Solutions for Real Functions under Ideal Conditions of Microwave Absorption

Huang Yao-Qing et al.

CHINESE PHYSICS LETTERS (2010)